About the laboratory

Laboratory of numerical experiments in ocean dynamics

Boris Kagan
Boris Kagan
Dmitrii  Romanenkov
Dmitrii Romanenkov

The laboratory was founded in 1973 and was headed by DSc B.A. Kagan. The main activity is focused on the study of problems of ocean geophysical hydrodynamics using numerical models. Since 2014 to the present time the Laboratory is headed by Dr. D.A. Romanenkov.

Staff of the Laboratory:

  • Dmitrii Romanenkov, Head of Lab, PhD
  • Boris Kagan, Chief Scientist, Professor
  • Alexey Androsov, Senior Scientist, DSc, PhD
  • Naum Voltzinger, Senior Scientist
  • Igor Kovchin, Chief Scientist, DSc, PhD
  • Dmitry Sein, Senior Scientist, PhD
  • Ekaterina Sofjina, Senior Scientist, PhD
  • Andrey Timofeev, Scientist
  • Inna Serjegina, Engineer

Previous studies (2011-2015):

  • Modeling of the surface and internal tides in the Arctic Ocean
  • Impact of the spatial inhomogeneity of the bottom hydrodynamic roughness on tidal dynamics and energetics in shallow seas and coastal waters
  • A spectral method of numerical solution of non-hydrostatic hydrodynamic models with an open boundary
  • Modeling of non-hydrostatic hydrodynamics in case of catastrophic natural coastal destruction
  • Modelling of nonlinear internal waves in the White sea

New studies:

  • Modeling of surface and internal tides in the Barents and Kara Seas
  • Development of non-hydrostatic models of straits and regions of the shelf of the World Ocean
  • Tidal changes of the Arctic seas climate

It is planned to study the spatial structure of the dissipation of baroclinic tidal energy and tidal diapycnic mixing in the Barents and Kara Seas. Dynamic and energy characteristics of surface and internal semidiurnal tides in the Barents and Kara Seas will be obtained. The turbulent diffusion coefficients will be compared for cases of combined (wind + thermohaline) and total (combined + tidal) forcing. The result of the comparison will be used to assess the tidal contribution in formation of a regional climate of marine systems. A general approach to the construction of reliable and adequate models of the dynamics and hydrology of the regions of the World Ocean with pronounced morphometry will be developed. Reasonable way to numerical solving the full non-hydrostatic problem is 1) to distinguish the sub-regions where non-hydrostatics is substantial and 2) then to link the non-hydrostatic solution here with the solution of hydrostatic, primitive, equations in the rest larger area of the region. The implementation of such models with high grid detailization will need parallel calculations to reproduce the fine vertical structure, process of vertical mixing and spreading of organic matter, mineral suspensions and radioactive substances. Applications of the developed approach will be presented for modeling of non-hydrostatic dynamics and hydrology in some straits, straits of archipelagoes and shelf-slope regions. The quality of the modeling will be evaluated.

Ongoing projects:

  • «Phenomena and processes of an arctic tidal sea in the submesoscale range of variability». Grant of Russian Foundation for Basic Research (RFBR), 15-05-04639а, 2015-2017 (D. Romanenkov).
  • «Tidally induced diapycnal diffusion and tidal changes in regional marine system climates using the Kara Sea as an example». Grant RFBR 17-05-00263a, 2017-2019, head B.Kagan.
  1. Kagan B.A., Sofina E.V. Surface and internal semidiurnal tides and tidally induced diapycnal diffusion in the Barents sea: a numerical study // Continental Shelf Research, 2014, 91, 158–170. (IF WoS 2.115)
  2. Androsov A. A., Voltzinger N. E., Vager B. G. Three-dimensional model of landslide dynamics / // Bulletin Of Civil Engineers. 2014.  №5(46).  P. 122-128 (in Russian). (IF – 0.239)
  3. Kozlov I., Romanenkov D., Zimin A., Chapron B. SAR observing large-scale nonlinear internal waves in the White Sea // Remote Sensing of Environment. 2014. 147. P. 99–107 doi:10.1016/j.rse.2014.02.017. (IF WoS 5.881)
  4. Zimin A.V., Romanenkov D.A., Rodionov A.A., Zhegulin G.V., Rodionov M.A. Field studies of short-term variability of hydrophysical fields of the White Sea in August 2013. Fundamental and Applied Hydrophysics. 2014 , V. 7, № 1, P. 85 -92. (In Russian).
  5. Sein, D. V. , Koldunov, N. V. , Pinto, J. G. and Cabos, W. (2014) Sensitivity of simulated regional Arctic climate to the choice of coupled model domain  // Tellus A, 66 , p. 23966 . doi:10.3402/tellusa.v66. (IF WOS 1.398)
  6. Zimin A. V.,. Romanenkov D. A, Kozlov I. E., Chapron B., Rodionov A. A., Atadjanova O. A., Myasoedov A. G., Collard F..  Short-Period Internal Waves in the White Sea: Operational Remote Sensing Experiment in Summer 2012 // Issledovanie Zemli iz Kosmosa. 2014. N 3. P. 41-45.  (In Russian). (IF – 1.242).
  7. Fofonova, V. , Androsov, A. , Danilov, S. , Janout, M. , Sofina, E. and Wiltshire, K. H. , Paul Overduin (2014) Semidiurnal tides in the Laptev Sea Shelf zone in the summer season // Continental Shelf Research, 73 , pp. 119-132 . doi:10.1016/j.csr.2013.11.010. (IF WOS 2.011)
  8. Ryabchenko V.A., V.A. Ryzhov, A.S. Averkiev, V.A. Gritsenko, M.B. Shilin, T.R. Eremina, A.V. Isaev, E.V. Sofyina, A.YU. Dvornikov. Computer technolologies for the educational level. Study guide.–St. Petersburg, RSHU, 2014. 68 p. (ISBN 978-5-86813-394-7).
  9. Eremina Tatjana, Sofina Ekaterina, Dailidiene Inga. Operational Oceanography. Textbook. SPb, RSHU, 2014. 86 p. (ISBN 978-5-86813-399-2).
  10. Rodionov A. A., Romanenkov D. A., Zimin A. V., Kozlov I. E., Chapron B. Submesoscale processes and dynamics in the White sea. State of the art and future research // Fundamental and Applied Hydrophysics. 2014. V. 7, № 3. P. 29–41. (In Russian). (IF – 0.249).
  11. Kagan, B. A.; Timofeev, A. A.Spatial variability in the drag coefficient and its role in tidal dynamics and energetics, a case study: The surface M 2 tide in the subsystem of the Barents and Kara Seas // Izvestiya Atmospheric and Oceanic Physics 51(1):98-111). (IF – 1.082).
  12. Voltzinger N. E., Androsov A. A. Modelling of Coastal Dynamics Generated by Landslide // Fundamentalnaya i prikladnaya gidrofizika. 2015. №8 (2). P. 10–21 (in Russian). (IF – 0.249)
  13. Kagan B.A., Sofina E.V. The spatial variability of the baroclinic tidal energy dissipation and the associated diapycnal diffusion in the Barents Sea. Oceanology. 2015. V. 55. № 1. P. 20-24. (IF 0.713)
  14. Kagan, B.A. & Sofina, Effect of the tidal mixing on the average climatic characteristics of the Barents Sea E.V. Izv. Atmos. Ocean. Phys. 2015. Volume 51, Issue 6,  pp 651–660. doi:10.1134/S0001433815060079 (IF – 1.082).
  15. Каган Б.А., Тимофеев А.А. Моделирование стационарной циркуляции и полусуточных поверхностных и внутренних приливов в проливе Карские Ворота // Фундаментальная и прикладная гидрофизика, 2015, т.8, №3, 72-79. (IF – 0.249)
  16. Sidorenko, D. , Rackow, T. , Jung, T. , Semmler, T. , Barbi, D. , Danilov, S. , Dethloff, K. , Dorn, W. , Fieg, K. , G??ling, H. F. , Handorf, D. , Harig, S. , Hiller, W. , Juricke, S. , Losch, M. , Schr?ter, J. , Sein, D. and Wang, Q. (2015) Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate // Climate Dynamics, 44 (3), pp. 757-780.  doi:10.1007/s00382-014-2290-6. (IF WOS 4.708)
  17. Vankevich R.E., Sofina E.V., Eremina T.E., Ryabchenko A.V., Molchanov M.S., Isaev A.V. Effects of lateral processes on the seasonal water stratification of the Gulf of Finland: 3-D NEMO-based model study // Ocean Science Discussions, 2015, 12, 2395–242. (IF WoS 2.232)
  18. Danilov, S. and Androsov, A. (2015) Cell-vertex discretization of shallow water equations on mixed unstructured meshes // Ocean Dynamics, 65 (1), pp. 33-47 . doi:10.1007/s10236-014-0790-x. (IF WOS 1.892)
  19. Voltzinger, N. and Androsov, A. (2016) Nonhydrostatic Dynamics of Straits of the World Ocean. Fundamentalnaya i prikladnaya gidrofizika, 9 (1), pp. 26-40. (In Russian, IF – 0.249).
  20. Voltzinger, N. and Androsov, A. (2016) Non-Hydrostatic Dynamics of a Region with an Underwater Mountain, Oceanology, 56 (4), pp. 537-546 . doi:10.7868/S0030157416030242 (IF 0.713).
  21. Romanenkov D. A., Zimin A. V., Rodionov A. A. , Atazhanova O. A., Kozlov I. E.  Variability of fronts and features of mesoscale  water dynamics in the White Sea.  Fundamentalnaya i prikladnaya gidrofizika.  2016, 9, 1, 59—72. (IF – 0.249).
  22. Sein D.V., Danilov S., Biastoch A., Durgadoo J.V., Sidorenko D., Harig S. and Wang Q. Designing variable ocean model resolution based on the observed ocean variability // Journal of Advances in Modeling Earth Systems, 2016. 8 (2), pp. 904–916. DOI: 10.1002/2016MS000650. (IF – 6.417)
  23. Cabos, W. , Sein, D. V. , Pinto, J. G. , Fink, A. H. , Koldunov, N. V. , Alvarez, F. , Izquierdo, A. , Keenlyside, N. and Jacob, D. (2016) The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models // Climate Dynamics. doi:10.1007/s00382-016-3319-9. (IF WOS 4.708)
  24. Niederdrenk, A. L. , Sein, D. and Mikolajewicz, U. (2016) Interannual variability of the Arctic freshwater cycle in the second half of the twentieth century in a regionally coupled climate model // Climate Dynamics. doi:10.1007/s00382-016-3047-1.      (IF WOS 4.708)
  25. Paxian, A. , Sein, D. , Panitz, H. J. , Warscher, M. , Breil, M. , Engel, T. , T?dter, J. , Krause, A. , Cabos Narvaez, W. , Fink, A. , Ahrens, B. , Kunstmann, H. , Jacob, D. and Paeth, H. (2016) Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models           // Journal of Geophysical Research-Atmospheres. doi:10.1002/2015JD024143. (IF WOS 5.6).
  26. Kagan, B.A. & Sofina, E.V. A method of accounting for tidal changes in regional climates of a water basin under conditions of an ice-free Barents Sea. Oceanology (2017) March 2017, Volume 57, Issue 2,  pp 245–252 doi:10.1134/S0001437016060047 (IF=0.693).
  27. Kagan B. A., Timofeev A. A. Interaction of the surface semidiurnal tides in the Barents and Kara Seas. Fundamentalnaya i prikladnaya gidrofizika. 2017, 10, 1, 5—10. (In Russian, IF=0.249).
  28. Kagan, B.A. & Timofeev, A.A. Izv. Atmos. Ocean. Phys. Simulation of Surface and Internal Semidiurnal Tides in the Kara Sea  (2017), Volume 53, Issue 2,  pp 233-241. doi:10.1134/S0001433817020050 (IF = 1.082).


Presentation poster (pdf)