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Rogue waves – large amplitude waves suddenly appear.
Rogue waves in the ocean my be very dangerous.

Linear theory could not explain this phenomenon. It is very
likely to be connected with modulation instability.

Self-focusing Nonlinear Schrödinger equation is used as
physical model. It is a completely integrable equation.

Also rogue waves in nonlinear optics, Bose-condensate.

Our aim is to obtain simple approximate formulas for
periodic problem under assumption that at t = 0 we
have a small perturbation of the constant solution.

u(x, 0) = 1 + ε(x), ε(x + L) = ε(x), ε(x) � 1.
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Unperturbed solution
u0(x, t) = e2it .

Consider a generic periodic perturbation:

ε(x) =
∑
j≥1

(
cje ikjx + c−je−ikjx

)
, kj =

2π
L

j, |cj | = O(ε),

The first N harmonics are unstable, where

N =

[
L
π

]
with the growing factor in the linear mode:

σj = kj

√
4 − k 2

j , 1 ≤ j ≤ N,
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Recurrence of Akhmediev breathers for one unstable mode
(L = 6).
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Zero-curvature representation

We study self-focusing NLS equation (SfNLS):

iut + uxx + 2u2ū = 0, u = u(x, t)

The zero-curvature representation:

~Ψx(λ, x, t) = U(λ, x, t)~Ψ(λ, x, t), ~Ψt (λ, x, t) = V(λ, x, t)~Ψ(λ, x, t),

U =

 −iλ iu(x, t)

iu(x, t) iλ

 ,
V(λ, x, t) =

 −2iλ2 + iu(x, t)u(x, t) 2iλu(x, t) − ux(x, t)

2iλu(x, t) + ux(x, t) 2iλ2 − iu(x, t)u(x, t)

 ,
where

~Ψ(λ, x, t) =

[
Ψ1(λ, x, t)
Ψ2(λ, x, t)

]
.
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The auxiliary linear problem

Alternatively,

L~Ψ(λ, x, t) = λ~Ψ(λ, x, t),

L =

[
i∂x u(x, t)

−u(x, t) −i∂x

]
.

The operator L is not self-adjoint, and the spectrum of this
problem typically contains complex points.
We consider the x-periodic problem:

u(x + L , t) = u(x, t).

Let us recall the spectral data for the periodic problem.
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The spectrum of unperturbed problem

The unperturbed spectral curve Γ0:

µ2 = λ2 + 1.
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Unstable resonant

points

points

Stable resonant

µn =
πn
L
, λn =

√
µ2

n − 1, Re λn + Im λn > 0, n = 0, 1, 2, . . .∞.
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The spectral data

In the periodic theory of the NLS equation the following two
spectral problems are used to define the spectral data:

1 The spectral problem on the line, i.e. the spectral problem in
L2(R). It is also called the main spectrum.

2 The spectral problem on the interval [x0, x0 + L ] with the
following Dirichlet-type boundary conditions:

Ψ1(λ, x0, t) = Ψ1(λ, x0 + L , t) = 0.

This spectrum is called the auxiliary spectrum or divisor.
Remark. Many authors use the following symmetric boundary
condition:

Ψ1(λ, x0, t) + Ψ2(λ, x0, t) = Ψ1(λ, x0 + L , t) + Ψ2(λ, x0 + L , t) = 0.

This approach has the following advantage: all divisor points are
located in a compact area of the spectral curve, but it requires one
extra divisor point and increases the complexity of the formulas.
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The spectral curve

To define the spectrum of the problem on the line, it is convenient
to introduce the monodromy matrix. Consider the matrix equation

LΨ̂(λ, x, t0) = λΨ̂(λ, x, t0),

where Ψ̂ is a 2 × 2 matrix with the initial condition

Ψ̂(λ, x0, t0) =

[
1 0
0 1

]
.

Then the monodromy matrix T̂(λ, x0, t0) is defined by:

T̂(λ, x0, t0) = Ψ̂(λ, x0 + L , t0).

The eigenvalues and eigenvectors of T(λ, x0, t0) are defined on a
two-sheeted covering of the λ-plane. This Riemann surface Γ is
called the spectral curve.
The spectral curve Γ is well-defined and does not depend on time.
The eigenvectors of T(λ, x0, t0) are the Bloch eigenfunctions of L
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The spectral curve

Let us denote:
κ(γ) = e iLp(γ).

The multivalued function p(γ) is called quasimomentum. Its
differential dp(γ) is well-defined and meromorphic on Γ, all periods
of dp are pure real.
The spectrum of L is exatly the projection of the set

Im p(γ) = 0.

to the λ-plane.
For λ ∈ R the matrix U is skew-hermitian, and the monodromy
matrix is unitary, therefore the whole real line lies in the spectrum
of L in L2(R).
The end points of the spectrum are the branch points of Γ:

κ(γ) = ±1. (1)

Equation (1) is also satisfied at the double points.
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The spectral curve

All real double points in the SfNLS theory are removable, i.e. they
do not arise in the inverse spectral transform. But a finite number
of non-removable complex double points may be present.
Equivalently, the branch and double points of Γ are exactly the
eigenvalues of L on the spaces of periodic and antiperiodic
functions:

L ~Ψ(γ, x, t) = λ(γ)~Ψ(γ, x, t),
~Ψ(γ, x + L , t) = ±~Ψ(γ, x, t), γ ∈ Γ.
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The spectral curve

If
~Ψ(λ, x, t) =

[
Ψ1(λ, x, t)
Ψ2(λ, x, t)

]
solves the auxiliary linear problem

L ~Ψ(λ, x, t) = λ~Ψ(λ, x, t),

then

~Ψ+(λ, x, t) =

 Ψ2(λ, x, t)
−Ψ2(λ, x, t)


satisfies the same equation with complex conjugate eigenvalue:

L ~Ψ+(λ, x, t) = λ~Ψ+(λ, x, t). (2)

It immediately implies that Γ is real, i.e. the set of branch points of
Γ is invariant with respect to the complex conjugation.
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Finite-gap potentials

Potential u(x, t) is called finite-gap if the spectral curve Γ is
algebraic, i.e., if it can be written in the form

ν2 =

2g+2∏
j=1

(λ − Ej).

It means that Γ has only a finite number of branch points and
non-removable double points. Such solutions can be written in
terms of the Riemann theta-functions. Any smooth, periodic in x
solution admits arbitrarily good finite gap approximation, for any
fixed time interval
A good approximation: We open only gaps associated with the
unstable modes. The perturbations associated with stable modes
remain small for all times..
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The auxiliary spectrum

The auxiliary spectrum (the divisor) is defined as the set of points
γ ∈ Γ such that the first component of the Bloch eigenfunction is
equal to 0 at the point x0, t0.

L ~Ψ(γ, x, t) = λ(γ)~Ψ(γ, x, t),
~Ψ(γ, x + L , t)) = κ(γ)~Ψ(γ, x, t),

Ψ1(γ, x0, t0) = 0.

Equivalently, the auxiliary spectrum coincides with the set of
zeroes of the first component of the Bloch eigenfunction:

Ψ1(γ, x0, t0) = 0. (3)
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Spectral data for a small perturbation of the constant
solution

Remark. Using the scaling x → α2x, t → αt the generic case can
be reduced to the case u0(x, t) = e2it .
Let u(x) = 1 + ε(x), where |ε(x)| � 1, ε(x + L) = ε(x). Then

U =

 −iλ i(1 + ε(x))

i(1 + ε̄(x)) iλ

 ,
where

ε(x, 0) =
∑
j≥1

(
cje ikjx + c−je−ikjx

)
, kj =

2π
L

j, |cj | = O(ε),

It is convenient to write:

L = L0 +L1, L0 =

[
i∂x 1
−1 −i∂x

]
, L1 =

[
0 ε(x)

−ε(x) 0

]
,

and the spectral data for L will be calculated using the perturbation
theory near the spectral data for L0.
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Perturbed spectral curve
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Perturbations of real resonant points generate stable
perturbations of solutions. They can be neglected.
Perturbations of imaginary resonant points generate
exponentially growing perturbations of solutions.

P. G. Grinevich, P.M. Santini Effectivization of the finite-gap formula for NLS



Perturbed spectral curve

u(x, 0) = 1 + ε(x, 0), ε(x, 0) =
∑

cje i 2π
L jx , cj � 1, c0 = 0.

Let us define:

αj = cj − (µj + λj)
2c−j , βj = c−j − (µj − λj)

2cj ,

α̃j = cj − (µj − λj)
2c−j , β̃j = c−j − (µj + λj)

2cj .

µj =
πj
L
, λ±j = ±

√
µ2

j − 1, Re λ+j + Im λ+j > 0, j = 1, 2, . . .∞.

Then:
El = λj ∓

1
2λj

√
αjβj + O(ε2), l = 2j − 1, 2j,

λ(γn) = λn +
1

4λn
[αn + βn]+O(ε2), p(γn) =

1
4µn

[αn − βn]+O(ε2)

Homoclinic orbit in this approximation: αj , 0, βj = 0.
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Perturbed auxiliary spectrum

For the unstable modes it is convenient to define:

φj = arccos
(
π

L
j
)

= arccos
(
kj

2

)
.

Then
λj = i sin(φj), µj = cos(φj), σj = kj

√
4 − k 2

j ,

αj = cj − e2iφj c−j , βj = c−j − e−2iφj cj ,

where σj is the linear increment of the unstable mode.
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The theta-functional solutions

A. R. Its., V. P. Kotljarov “Explicit formulas for solutions of the
Nonlinear Schrdinger equation” (Ukrainian) Dokl. Ukrain. SSR,
Ser. A, no. 11, (1976), 965–968.

u(x, t) =
θ(~A(∞−) − ~U1x − ~U2t − ~A(D) − ~K)

θ(~A(∞+) − ~U1x − ~U2t − ~A(D) − ~K)
× (4)

×
θ(~A(∞+) − ~A(D) − ~K)

θ(~A(∞−) − ~A(D) − ~K)
· u(0, 0) · exp(2it)(1 + O(ε2)),

θ(z|B) =
∑
nj

exp

2πi
∑

j

njzj + πi
∑
j,k

bjk njnk

, j, k = 1, . . . , g.

Here ~A(γ) denotes the Abel transform, ~K is the vector of Riemann
constants, B denotes the matrix of periods, ~U1, ~U2 are some
periods of meromorphic differentials.
We need some explicit approximate formulas.
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Approximation of spectral curve

We use the following basis of cycles:
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The Riemann period matrix

For the matrix of period we obtain (here g = 2N):

bjj =
1
πi

log

 √
αjβj

8 Im(λj) (µj)
2

 + . . . , 1 ≤ j ≤ N,

exp (πibjj) =

√
αjβj

8 Im(λj) (µj)
2 + O(ε2), 1 ≤ j ≤ N,

bj+N,j+N = −bj,j , 1 ≤ j ≤ N.

bkj =
1
πi

log
 | Im(λ̂j − λ̂k )|

λ̂j λ̂k + µ̂j µ̂k + 1

 + O(ε2) for all j , k .

λ̂j =


λj if 1 ≤ j ≤ N

λj−N if N + 1 ≤ j ≤ 2N
, µ̂j =


µj if 1 ≤ j ≤ N

µj−N if N + 1 ≤ j ≤ 2N
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Final formulas

One can choose integration path so that

u(x, t) = exp(2it)
θ(~A(∞−) − ~U1x − ~U2t − ~A(D))

θ(−~A(∞−) − ~U1x − ~U2t − ~A(D))
× (5)

×
θ(−~A(∞−) − ~A(D))

θ(~A(∞−) − ~A(D))
× u(0, 0) × (1 + O(ε2)).

~A(∞−) =



−1
4 −

φ1
2π

...

−1
4 −

φN
2π

−1
4 + φ1

2π
...

−1
4 + φN

2π


+O(ε2), ~A(D) =



1
2πi log

[
α1√
α1β1

]
...

1
2πi log

[
αN√
αNβN

]
1

2πi log
[
−

α̃1√
α̃1β̃1

]
...

1
2πi log

[
−

α̃N√
α̃N β̃N

]



+. . . ,
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Final formulas

~U1 =



−
µ1
π

−
µ2
π
...

−
µN
π

−
µ1
π

−
µ2
π
...

−
µN
π


, ~U2 =



−
2λ1µ1
π

−
2λ2µ2
π
...

−
2λNµN
π

2λ1µ1
π

2λ2µ2
π
...

2λNµN
π


+ O(ε2),
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One unstable mode

In the case of one unstable mode only, the simplest nontrivial initial
condition excites just that mode:

u(x, 0) = 1 + ε
(
c1e ik1x + c−1e−ik1x

)
,

where c1 and c−1 are arbitrary O(1) complex parameters.
Problem: Calculate the time of the first rogue wave appearance
and its position. Calculate the periodicity of appearances in terms
of the Cauchy data.
Akhmediev 1-breather:

A1(x, t ; φ1, x1, t1, ρ) =

= e2it+iρ cosh[Σ1(t − t1) + 2iφ1] + sin φ1 cos[K1(x − x1)]

cosh[Σ1(t − t1)] − sin φ1 cos[K1(x − x1)]
,

where
K1 = 2 cos φ1, Σ1 = 2 sin(2φ1),
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Approximate genus 2 solution

Approximation of the genus 2 solution at a finite time interval:

u(x, t) =
n∑

m=0

A1

(
x, t ; φ1, x

(m)
1 , t(m)

1 , ρ(m)
)
−

1 − e4inφ1

1 − e4iφ1
e2it , x ∈ [0, L ],

where

x(n)
1 = X+

1 +(n−1)∆
(x)
1 , t(n)1 = T1(|α1|)+(n−1)Tp , ρ

(n) = 2φ1+(n−1)4φ1,

x(n)
1 denote the position of the maximum at the n-th appearance,

t(n)1 denotes the time of the n-th appearance,

X+
1 =

arg(α1) − φ1 + π/2
k1

, ∆
(x)
1 =

arg(α1β1)

k1
.

T1(|α1|) =
1
σ1

log
 σ2

1

2|α1|

 , Tp =
2
σ1

log

 σ2
1

2
√
|α1β1|

 .
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Approximate genus 2 solution

These formulas can be aslo derived directly using the matched
asymptotic expansions.

Two unstable mode solution.
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