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Introduction
L V Bogdanov, SDYM equations on the self-dual background, J.
Phys. A: Math. Theor. 50 19LT02 (2017)
L.V. Bogdanov and M.V. Pavlov, Linearly degenerate hierarchies of

quasiclassical SDYM type, Journal of Mathematical Physics 58, 093505

(2017)

Multidimensional dispersionless integrable systems: Lax pairs of the type

[X1,X2] = 0,

X1 = ∂t1 +
N∑
i=1

Fi∂xi + F0∂λ, X2 = ∂t2 +
N∑
i=1

Gi∂xi + G0∂λ.

λ - `spectral parameter', functions Fk , Gk are holomorphic in λ and depend

on the variables t1, t2, xn. We will consider polynomials (or Laurent

polynomials) in λ (meromorphic functions).

Dispersionless limits of integrable equations (dKP, dispersionless 2DTL

hierarchy), Pleba�nski heavenly equations, hyper-K�ahler hierarchies belong

to this class.
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Matric extension - covariant vector �elds of the form

∇X1 = X1 + A1, ∇X2 = X2 + A2,

A1, A2 are matrix functions of space-time variables holomorphic in λ
(polynomials, Laurent polynomials, meromorphic functions).

Lax pairs of this structure were already present in Zakharov and Shabat

(1979).

The commutator of two covariant vector �elds contains vector �eld part

and matrix (Lie algebraic) part,

[∇X1 ,∇X2 ] = [X1,X2] + X1A2 − X2A1 + [A1,A2]

Compatibility condition - vector �elds (dispersionless equations)

[X1,X2] = 0

Compatibility condition - matrix part (matrix equations on the

dispersionless background)

X1A2 − X2A1 + [A1,A2] = 0
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Compatibility conditions imply (local) existence of common solutions for

linear equations.

X1ψi = 0, X2ψi = 0.

N independent solutions ψi (λ, t1, t2, x) (Frobenius theorem) - `wave

fuctions' for dispersionless integrable system (background), general solution

ψ = f (ψ1, . . . , ψN)

Wave function for extended system

∇X1Φ0 = (X1 + A1)Φ0 = 0, ∇X2Φ0 = (X2 + A2)Φ0 = 0,

locally Φ may be cosidered as series in λ. general solution

Φ = Φ0F (ψ1, . . . , ψN),

where F is matrix complex analytic function.
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It is easy to check that extended linear equations are equivalent to

(X1Φ)Φ−1 = −A1, (X2Φ)Φ−1 = −A2

where A1, A2 are polynomials (Laurent polynomials, meromorphic

functions). This is a characteristic analytic property of Φ, important for

algebraic de�nition of the hierarchy (Lax-Sato equations) and for

construction of solutions.

To construct Φ, we may consider matrix RH problem

Φ+ = Φ−R(ψ1, . . . , ψN),

de�ned on some oriented curve γ in the complex plane, or matrix ∂̄ problem

∂̄Φ = ΦR(ψ1, . . . , ψN),

de�ned in some region G , and ψi (λ, t) are arbitrary wave functions of

dispersionless Lax pair

L.V. Bogdanov (L.D. Landau ITP RAS) Nonlinear Sessison 2017 5 / 35



SDYM equations
SDYM (ASDYM) equations

F = ± ∗ F
represent SD (ASD) condition for the two-form (�eld intensity, connection

curvature)

F = dA + A ∧ A
the gauge �eld (potential) A is a one-form (connection form) taking its

values in some Lie algebra (we will consider general matrix-valued form).

Full Yang-Mills equation

D ∗ F = 0

SDYM are conformally invariant and depend only on conformal structure.

SD (ASD) conformal structure [g ] (ASD or SD part of the Weyl tensor

vanishes):

W = ± ∗W ,

for real case exist only for Riemannian (Euclidean) signature and neutral

signature (+ +−−). Complexi�cation allows to consider both cases on

equal footing.
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Integrable background geometries

Atiyah M.F., Hitchin N.J., Singer I.M., Self-duality in
four-dimensional Riemannian geometry, Proc. Roy. Soc. London
Ser. A 362 (1978), 425�461.

There is a curved twistor space as long as the conformal structure on

4-manifold is selfdual. SDYM equations for selfdual conformal structure are

integrable by twistor approach.

David M.J. Calderbank, SIGMA 10 (2014), 034, 51 pages

SDYM equations (and their reductions) are integrable in some non�at

geometries described by dispersionless integrable equations.

We will go opposite direction, starting from dispersionless integrable

equations and extending integrable structures (Lax pairs, dressing scheme,

the hierarchy) for gauge �eld equations on the background.
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Theorem (Dunajski, Ferapontov and Kruglikov (2014))

There exist local coordinates (z ,w , x , y) such that any ASD conformal

structure in signature (2, 2) is locally represented by a metric

1

2
g = dwdx − dzdy − Fydw

2 − (Fx − Gy )dwdz + Gxdz
2,

where the functions F , G : M4 → R satisfy a coupled system of third-order

PDEs,

∂x(Q(F )) + ∂y (Q(G )) = 0,

(∂w + Fy∂x + Gy∂y )Q(G ) + (∂z + Fx∂x + Gx∂y )Q(F ) = 0, (1)

where

Q = ∂w∂x − ∂z∂y + Fy∂x
2 − Gx∂y

2 − (Fx − Gy )∂x∂y .
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System (1) arises as [X1,X2] = 0 from the dispersionless Lax pair

X1 = ∂z − λ∂x + Fx∂x + Gx∂y + f1∂λ,

X2 = ∂w − λ∂y + Fy∂x + Gy∂y + f2∂λ.

Due to compatibility conditions, f1 and f2 can be expressed through F and

G ,

f1 = −Q(G ), f2 = Q(F ),

Q = ∂w∂x − ∂z∂y + Fy∂x
2 − Gx∂y

2 − (Fx − Gy )∂x∂y .

Correspondence between ASD conformal structures and integrable system

de�ned by generic commuting vector �elds.

Real case with the signature (2,2) or, generally, complex analytic case may

be considered.

Reductions:

Dunajski system - null K�ahler case, divergence free vector �elds

f1, f2 = 0 (no ∂λ in the vector �elds), divergence free - Plebanski's second

heavenly equation (ASD, Ricci �at)

L.V. Bogdanov (L.D. Landau ITP RAS) Nonlinear Sessison 2017 9 / 35



Integrability properties of this Lax pair

The hierarchy, Lax-Sato equations, the dressing scheme - Bogdanov,

Dryuma and Manakov (2007)

The structure of the hierarchy in terms of vector �elds

X n
1 = ∂zn − λn∂x + F n

1 (λ)∂x + Gn
1 (λ)∂y + f n1 (λ)∂λ,

X n
2 = ∂wn − λn∂y + F n

2 (λ)∂x + Gn
2 (λ)∂y + f n2 (λ)∂λ,

where we have two in�nite sets of times zn, wn and two `basic' variables x ,
y , the coe�cients of vector �elds are polynomials in λ of the order n − 1.

Multidimensional version contains N in�nite sets of times and N `basic'

variables.
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Extension of the Lax pair
Consider a gauge �eld A in some (matrix) Lie algebra and `covariant vector

�elds' X1, X2

∇X1 = ∂z − λ∂x + Fx∂x + Gx∂y + f1∂λ + A1,

∇X2 = ∂w − λ∂y + Fy∂x + Gy∂y + f2∂λ + A2

(here A1, A2 do not depend on λ). Lax pairs of this structure were already

present in Zakharov and Shabat (1979).

The commutator of two covariant vector �elds contains vector �eld part

and Lie algebraic part,

[∇X1 ,∇X2 ] = [X1,X2] + X1A2 − X2A1 + [A1,A2]

Demanding both parts to be equal to zero, from the �rst part we get the

system describing conformally ASD metric, and the second part gives the

system for A1, A2

∂xA2 = ∂yA1,

(∂z + Fx∂x + Gx∂y )A2 − (∂w + Fy∂x + Gy∂y )A1 + [A1,A2] = 0.
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Standard ASDYM case (trivial plane background)
For F = G = 0 we have

X1 = ∂z − λ∂x ,
X2 = ∂w − λ∂y ,

1

2
g = dwdx − dzdy .

The extended Lax pair takes the form

∇X1 = ∂z − λ∂x + A1,

∇X2 = ∂w − λ∂y + A2,

and the commutativity condition is

∂xA2 = ∂yA1,

∂zA2 − ∂wA1 + [A1,A2] = 0.

This a well known form of ASDYM equations for constant metric g in a

special gauge.
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General case

1. Geometry

Extended Lax pair gives a general form of ASDYM equations for arbitrary

conformally ASD metric g in signature (2,2) (locally, up to transformations

of coordinates and a gauge).

2. Integrability

Extended Lax pair belongs to the hierarchy which unites ASDYM hierarchy

and generic 4-dimensional dispersionless hierarchy. Lax-Sato equations and

dressing scheme can be constructed for this hierarchy.
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Geometry

Given: conformally ASD metric g with signature (2,2) (ASD conformal

structure) and ASD gauge �eld with a connection form A. The
corresponding gauge curvature form is F = dA + A ∧ A, it satis�es the
ASDYM equation

F = − ∗ F
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First step:

following Dunajski, Ferapontov and Kruglikov, we �nd local coordinates

(z ,w , x , y) such that ASD conformal structure is locally represented by a

metric

1

2
g = dwdx − dzdy − Fydw

2 − (Fx − Gy )dwdz + Gxdz
2,
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Second step:

notice that for this metric due to ASDYM equation we have

F34 = 0,

where we have used inverse matrix to metric g de�ned by symmetric

bivector

1

2
Q = ∂w∂x − ∂z∂y + Fy ∂

2
x + (Gy − Fx) ∂x∂y − Gx ∂

2
y

det g = detQ = 1 (for this metric F 12 = F34). Then it is possible to

choose a gauge such that

A3 = A4 = 0,

and we have only two nontrivial gauge �eld components A1, A2.
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Third step:

we will prove that ASDYM equations for A1, A2 for the metric g coincide

with Lie algebraic part of compatibility equations for extended Lax pair.
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Tetrad of one-forms

The conformal structure is represented by (DFK)

g = 2(e00
′
e11

′ − e01
′
e10

′
),

where the tetrad of one-forms is

e00
′

= dw ,

e10
′

= dz ,

e01
′

= dy − Gydw − Gxdz ,

e11
′

= dx − Fydw − Fxdz .
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Tetrad of vector �elds

The dual tetrad of vector �elds is

e00′ = ∂w + Fy∂x + Gy∂y , (+A2)

e10′ = ∂z + Fx∂x + Gx∂y , (+A1)

e01′ = ∂y ,

e11′ = ∂x ,

symmetric bivector reads

Q = 2(e00′e11′ − e01′e10′).

ASDYM equations for this tetrad take the form

F00′10′ = 0, F00′11′ = F10′01′
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For gauge �eld curvature F in the tetrad basis we use a standard formula

F(u, v) = ∇u∇v −∇v∇u −∇[u,v]

for arbitrary vector �elds u, v. Taking into account the structure of tetrade

and the fact that for our gauge A3 = A4 = 0, we see that the third term

doesn't contain a gauge �eld, and for the curvature components we get

F00′10′ = (∂w + Fy∂x + Gy∂y )A1 − (∂z + Fx∂x + Gx∂y )A2 − [A1,A2],

F00′11′ = −∂xA2, F10′01′ = −∂yA1

Thus ASDYM equations read

(∂w + Fy∂x + Gy∂y )A1 − (∂z + Fx∂x + Gx∂y )A2 − [A1,A2] = 0,

∂xA2 = ∂yA1,

which coincides with the Lie algebraic part of commutativity condition for

extended vector �elds Lax pair.
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Gauge-invariant SDYM equations
Lax pair

∇X1 = ∂z + Fx∂x + Gx∂y + A1 − λ(∂x + B1) + f1∂λ,

∇X2 = ∂w + Fy∂x + Gy∂y + A2 − λ(∂y + B2) + f2∂λ

Compatibility condition (matrix part)

∂xB2 − ∂yB1 + [B1,B2] = 0,

∂xA2 − (∂w + Fy∂x + Gy∂y )B1 − [B1,A2]

= ∂yA1 − (∂z + Fx∂x + Gx∂y )B2 − [B2,A1],

(∂z + Fx∂x + Gx∂y )A2 − (∂w + Fy∂x + Gy∂y )A1

+[A1,A2] + f2B1 − f1B2 = 0.

Represent ASDYM equations for the ASD conformal structure

1

2
g = dwdx − dzdy − Fydw

2 − (Fx − Gy )dwdz + Gxdz
2,
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First heavenly type extended Lax pair

Motivated by the K�ahler case, we suggest to consider conformal structure

de�ned by the symmetric bivector

1

2
q = a ∂w · ∂w̃ + b ∂z · ∂w̃ + c ∂w · ∂z̃ + d ∂z · ∂z̃ ,

and corresponding extended Lax pair

∇X1 = ∂z̃ − λ(a∂w + b∂z) + (λ2f1 + λg1)∂λ + A1 − λB1,

∇X2 = ∂w̃ + λ(c∂w + d∂z) + (λ2f2 + λg2)∂λ + A2 + λB2,

Vector �elds part of commutation relations gives seven equations for eight

functions because of conformal freedom. To �x representative of conformal

structure and close the system of equations, it is convenient to use the

condition det

(
a b
c d

)
= 1, in this case three independent coe�cients of

bivector satisfy three second-order equations, and the conformal structure

depends on 6 arbitrary functions of three variables.
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Einstein-Weyl geometry, Manakov-Santini system and
monopole equation
An important (2+1)-dimensional example is provided by the

Manakov-Santini system. Extended Lax pair

∇X1 = ∂y − (λ− vx)∂x + ux∂λ + A,

∇X2 = ∂t − (λ2 − vxλ+ u − vy )∂x + (uxλ+ uy )∂λ + λA + B,

A, B are gauge �eld components. Vector �eld part of commutation

relations gives the Manakov-Santini system

uxt = uyy + (uux)x + vxuxy − uxxvy ,

vxt = vyy + uvxx + vxvxy − vxxvy , (2)

describing general Einstein-Weyl geometry (DFK2014) (Lorentzian

signature for the real case), and matrix part of compatibility conditions read

Ay − Bx = 0,

(∂y + vx∂x)B − (∂t + (vy − u)∂x)A + uxA + [A,B] = 0
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For the potential Φ, A = Φt , B = Φy we have

Φtx − Φyy − [Φx ,Φy ]− ∂x(uΦx) + vyΦxx − vxΦxy = 0,

where u, v satisfy Manakov-Santini system describing Einstein-Weyl

geometry.

This system represents a general local form of monopole equations on

Einstein-Weyl background (up to coordinate transformations and a gauge).
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Matrix dressing on the geometric background

Generally, we may consider matrix RH problem

Φ+ = Φ−R(ψ1, ψ2, ψ3),

de�ned on some oriented curve γ in the complex plane, or matrix ∂̄ problem

∂̄Φ = ΦR(ψ1, ψ2, ψ3),

de�ned in some region G , and ψi (λ, t) are arbitrary wave functions of

dispersionless Lax pair

X1ψi = (∂z − λ∂x + Fx∂x + Gx∂y + f1∂λ)ψi = 0,

X2ψi = (∂w − λ∂y + Fy∂x + Gy∂y + f2∂λ)ψi = 0,

de�ned on γ or in G .
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Let us suggest the existence of solution Φ of RH (or ∂̄) problem having no

zeroes and normalized by 1 at in�nity. Then X1Φ, X2Φ satisfy the same

problem ([X1,R] = [X2,R] = 0), and the functions

(X1Φ)Φ−1, (X2Φ)Φ−1

are holomorphic in the complex plane.

Considering the behaviour at in�nity, we get

(X1Φ)Φ−1 = ∂xΦ1(t),

(X2Φ)Φ−1 = ∂yΦ1(t),

or the solution for the extended Lax pair with the gauge �eld

A1 = ∂xΦ1(t), A2 = ∂yΦ1(t).

Dropping the normalization condition at in�nity, we will get solution for

gauge-invariant extended Lax pair.
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There are important reductions connected with existence of polynomial

wave functions for dispersionless Lax pair ψ = Pn(λ), coe�cients of the

polynomial depends on times. A class of special ASDYM solutions for these

geometries is de�ned by the problems

Φ+ = Φ−R(Pn) or

∂̄Φ = ΦR(Pn).

Another important reduction of geometry: linearly-degenerate case (no ∂λ
in dispersionless Lax pair, λ is one of the wave functions),

Φ+ = Φ−R(λ, ψ1, ψ2) or

∂̄Φ = ΦR(λ, λ̄, ψ1, ψ2).

In this case ASDYM Lax pair admits rational (in λ) solutions with simple

stationary poles (correspond to δ-functions in the ∂̄ problem), which can be

calculated explicitly.
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From the dressing scheme to the hierarchy
1. Dressing for vector �elds. Nonlinear vector Riemann-Hilbert problem

(e.g. on the unit circle, here we don't discuss the question of reductions)

Ψ0

in = F0(Ψ0
out,Ψ

1
out,Ψ

2
out),

Ψ1

in = F1(Ψ0
out,Ψ

1
out,Ψ

2
out),

Ψ2

in = F2(Ψ0
out,Ψ

1
out,Ψ

2
out),

the expansions at in�nity are

Ψ0
out = λ+

∞∑
n=1

Ψ0

n(t1, t2)λ−n,

Ψ1
out =

∞∑
n=0

t1n(Ψ0)n +
∞∑
n=1

Ψ1
n(t1, t2)λ−n

Ψ2
out =

∞∑
n=0

t2n(Ψ0)n +
∞∑
n=1

Ψ2
n(t1, t2)λ−n,

inside the unit circle the functions are analytic.
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Ψ0, Ψ1, Ψ2 will give the wave fuctions for the hierarchy of commuting

vector �elds, de�ned through coe�cients of expansion of these functions.
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2. Matrix dressing on the background. Consider a matrix

Riemann-Hilbert problem

Φin = ΦoutR(Ψ0
out,Ψ

1
out,Ψ

2
out),

Φ is normalized by 1 at in�nity and analytic inside and outside the unit

circle,

Φout = 1 +
∞∑
n=1

Φn(t1, t2)λ−n

Expansions of Ψ, Φ give coe�cients for extended Lax pair, Φ is a wave

function. A general wave function is given by the expression

ΦF (Ψ0,Ψ1,Ψ2), F is arbitrary matrix function.

For constant metric g corresponding to trivial vector �elds we have

Ψ0 = λ, Ψ1 = x + λz , Ψ2 = y + λw ,

and we get standard Riemann-Hilbert problem for ASDYM.
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The vector �elds part of the dressing scheme implies analyticity in the

complex plane of the form (no dicontinuity on the unit circle)

ω =

∣∣∣∣D(Ψ0,Ψ1,Ψ2)

D(λ, x1, x2)

∣∣∣∣−1 dΨ0 ∧ dΨ1 ∧ dΨ2,

where x1 = t1
0
, x2 = t2

0
are lowest times of the hierarchy, and from matrix

Riemann problem we get analyticity of the matrix-valued form

Ω = ω ∧ dΦ · Φ−1.
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Analyticity of these forms imply the relations

(ωout)− =

(∣∣∣∣D(Ψ0
out,Ψ

1
out,Ψ

2
out)

D(λ, x1, x2)

∣∣∣∣−1 dΨ0
out ∧ dΨ1

out ∧ dΨ2
out

)
−

= 0,

(Ωout)− = (ωout ∧ dΦout · Φ−1out)− = 0

for the series Ψ0
out, Ψ1

out, Ψ2
out, Φout. These relations are generating

relations for the hierarchy in terms of formal series, they are equivalent to

the complete set of Lax-Sato equations of the hierarchy.

First relation gives Lax-Sato equations for the hierarchy of commuting

polynomial in λ vector �elds (here we drop subscript `out' for the series):

∂knΨ =
2∑

i=0

((
D(Ψ0,Ψ1,Ψ2)

D(λ, x1, x2)

)−1
ik

(Ψ0)n

)
+

∂iΨ,

where 1 6 n <∞, k = 1, 2, ∂0 = ∂λ, ∂1 = ∂x1 , ∂2 = ∂x2 ,
Ψ = (Ψ0,Ψ1,Ψ2).
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The second generating relation gives Lax-Sato equations for Φ on the

vector �eld background in terms of extended polynomial vector �elds,

∂knΨ = V k
n (λ)Ψ,

∂knΦ =
(
V k
n (λ)− ((V k

n (λ)Φ) · Φ−1)+
)

Φ

First �ows give exactly the extended Lax pair for ASDYM equations on

ASD background, if we identify z = t1
1
, w = t2

1
, x = x1, y = x2.
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Questions

Solutions!

Higher-dimensional case � what is the geometry?

Lower-dimensional cases and reductions � known integrable systems

on the background?
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THANK YOU!
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