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Klaus Hasselmann (1962)
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Snl –derived from free surface Euler equations

Sin –multiple versions, differences up to 500%

Sdiss –multiple LF and HF versions

Detailed discussion in Pushkarev, Zakharov 2016



Motivation : 

Build Sin  consistent  with  mathematical

properties  of  Hasselmann  equation and

requiring  minimal  tuning  of  the model
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Background



Field Experiments Theory Numerics
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Experiment p q

Black Sea (Babanin & Soloviev 1998b) 0.89 0.275

Walsh et al. (1989) US coast 1.0 0.29

Kahma & Calkoen (1992) unstable 0.94 0.28

Kahma & Calkoen (1992) stable 0.76 0.24

Kahma & Pettersson (1994) 0.93 0.28

JONSWAP by Davidan (1980) 1.0 0.28

JONSWAP by Phillips (1977) 1.0 0.25

Kahma & Calkoen (1992) composite 0.9 0.27

Kahma (1981, 1986) rapid growth 1.0 0.33

Kahma (1986) average growth 1.0 0.33

Donelan et al. (1992) St Claire 1.0 0.33

Ross (1978), Atlantic, stable 1.1 0.27

Liu & Ross (1980), Michigan, unstable 1.1 0.27

JONSWAP (Hasselmann et al. 1973) 1.0 0.33

Mitsuyasu et al. (1971) 1.008 0.33

ZRP numerics 1.0 0.3

Exponents  of wind-wave growth in fetch-limited experiments. Adapted 
from Badulin, Babanin, Zakharov, Resio 2007



Theoretical approach



Limited Fetch case:   
∂ωk

∂ k⃗
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=Snl+Sin

Duration limited case: ∂ε
∂ t

=Snl+Sin

Sin∼εω
s+1

Existence of self-similar solutions is no 
guarantee of their realization!

Example – wave collapse in NLS



Duration Limited Case Fetch Limited Case
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Experimental approach



Resio-Long 2004-2007 regression line
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Duration Limited Case Fetch Limited Case

p=10 /7  q=10 /7

s=4 /3

p=1   q=3 /10  

s=4 /3



ZRP wind input term:

Sin(ω ,θ)=A⋅
ρair
ρwater

ω (
ω
ω0 )

4 /3

f (θ)  ε(ω ,θ)

f (θ)= {cos2
(θ) ,  for  −π/2<θ<π/2

0 ,  otherwise }
ω0=

g
U 10



Numerical approach



 The model still misses 2 features:

    - the coefficient in front of ZRP Sin

    - dissipation function Sdiss

The coefficient 0.05 in front of ZRP term was 

chosen from field observations.



We used ∼f−5
 HF “implicit dissipation” tail 

for f⩾1.1Hz , working as the sigar cutter in 

Fourier space:



Duration limited case

Wind speed 10 m/sec



Dimensionless energy versus dimensionless solid line. 
Self-similar solution - dashed line.



Total energy index as the function of dimensionless time - solid
line. Self-similar index p = 10/7 -  dashed line.



Dimensionless frequency versus dimensionless - solid line, 
self-similar solution - dashed line.



Mean frequency index versus dimensionless time - solid line.
Self-similar index q = −3/7 - dashed line



"Magic number" 9q − 2p versus dimensionless time – solid line. 
Self-similar target - dashed line.



Decimal logarithm of the angle averaged spectrum versus decimal 
logarithm of the frequency - solid line. Spectrum f−4  - dashed line, 
spectrum f−5  - dash-dotted line.



Compensated  spectrum versus frequency f.



Angle averaged wind input function (dotted line) and angle averaged 
spectrum (solid line) versus frequency f.



Experimental (dotted line), theoretical (dashed line) and numerical 
(diamonds) 1000β versus specific velocity for wind speed 10 m/sec. 





Limited fetch case

Wind speed 5 and 10 m/sec



Total energy versus fetch: wind speed 10 m/sec - solid line, 
5 m/sec - dash-dotted line. Self-similar solution - dashed line



Local energy index versus fetch.



Mean frequency versus the fetch for wind speed 10 m/sec (solid line) 
and 5 m/sec (dashed line). Self-similar dependence - dash-dotted 
line.



Local mean frequency exponent −q = dln<ω> dlnx as the function of 
dimensionless fetch xg/U2 for fetch limited case. Wind speed 10 m/sec
- solid line, wind speed 5 m/sec - dashed line. Horizontal dashed 
line - target value of the self-similar exponent -q = -0.3.



Magic number" 10q − 2p versus the fetch. Wind speed 10 m/sec - solid 
line, wind speed 5 m/sec - dash-dotted line. Self-similar target 1 – 
dashed line.



Decimal logarithm of the angle averaged spectrum versus decimal 
logarithm of the frequency - solid line. Spectrum f−4  - dashed line, 
spectrum f−5  - dash-dotted line.



Angle averaged wind input function (dotted line) and angle averaged 
spectrum (solid line) versus frequency f.



Compensated spectrum versus frequency f.



Experimental (dotted line), theoretical (dashed line) and numerical 
(diamonds) 1000β versus specific velocity for wind speed 10 m/sec.



Energy versus fetch, adapted from Young 1999



Frequency versus fetch, adapted from Young 1999







CONCLUSIONS:

1. New set of Hasselmann equation source terms has been 
introduced, based on XNL, self-similarity analysis and 
experimental observations

2. ZRP S in  is the same for limited fetch and time domain 
statements

3.The new set of source terms reproduces self-similar 
properties of Hasselmann equation.

4. ZRP S in  and “implicit” dissipation reproduce the results of
a dozen of the field experimental predictions



What we call
long-wave, or
spectral peak
dissipation?



Is our simulation
trustworthy?



Komen, S. Hasselmann, K. Hasselmann JPO (1984)


