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In 1933 A. N. Kolmogorov has published first paper on the stochastic motions of a particle. 

Next two years he was developing a basics for the theory of random motions 

combining the trajectories and velocities for particles under action of random forces. 

It is culminated in a two-page paper "Zufallige Bewegungen" Ann. Math. 35, 116-117, 1934. 

He considered there stochastic process with homogeneous probability p(r, u, τ) 

invariant to galilean transformations of the coordinate system. 

The Fokker – Planсk equation was derived: 
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The solution of this equation at the initial condition p(r, u, 0) = p(0, 0, 0) 
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with 2 , i iD u r  the diffusion coefficient in the velocity space 
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Later A. M. Obukhov (1959. Adv. Geophys. 6, 113-115) 

that for turbulent flows in the inertial interval D = ε/2, 

the diffusion in the velocity space is equal to a half of the rate 

of the generation/dissipation of the turbulent kinetic energy. 

He also noted that there are scales for the mean position and 

velocity (or energy) and diffusion coefficient in the coordinate space 
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Express time from (3) and put it to (4) and (4): 
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i.e. we obtain expressions for the velocity structure function 

and for the Richardson-Obukhov turbulent diffusion laws. 

The expression (3) 2u   was first published in 1944 by L. D. Landau 

and is well known for theoreticians 

as the time gain of energy under stochastic forcing. 
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The expressions (3) – (5) are derived for an ensemble of particles  

as asymptotes for   . But these both conditions we have never in reality. 

Therefore we (Gledzer and Golitsyn, 2010) have undertaken 

prolonged numerical experiments by solving system of equations 

u a
i i

, x u
i i

 at τ = 0, ai = 0, ui = 0,        (6) 

i = 1, 2, …., N – the general number of couples of such equations. 

 

The accelerations ai for every particle and at each time step 

had independent probability distribution functions. 

PDF were tried as normal, β and γ distributions with varying numbers of parameters. 

The second moments for coordinate and mean velocities 

were calculated with time τ.  
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The second moments for velocities and displacements in time for 10N   and 100 for  -distributions of 

random forcings 
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The structure function for the transversal velocity component obtained 

by A.M. Obukhov (1949a) after measurement data by Gӧdecke (1935) 
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Normalized velocity spectrum obtained (1) in aerodynamic tube, (2) in near water air layer, 

(3) in ocean tidal current G. I. Taylor hypothesis ω = ku  
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Temperature spectra in atmospheric surface layer 

(A. S. Gurvich, T. K. Kravchenko, 1961)  
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Dependence of coefficients of relative turbulent diffusion on the tracer spot size, 

●Richardson (1926, 1929), ○ Golitsyn (2004) after data by E. Lindborg (1999). 
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All is very good with our computations (Gledzer&Golitsyn, 2010) illustrating Kolmogorov (1934), 

but… strictly speaking comparisons with reality is not quite correct: 

in calculations with numbers of particles the third moment 3 0U  , 

but in real turbulence the asymmetry  
3/2

3 2/ 0U U  ! 

In our calculations NO dissipation!  
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However, there are models of 2D turbulence with S > 0 

Kraichnan (1966): Isotropic turbulence and inertial range structures 

(Phys. Fluids, 9, 1937-1943). 

In the model there is the wave number k0 of vorticity generation. 

The vorticity input 2d
M

dt
  and at k > k0 the velocity energy spectrum is 3( )nE k Mk . 

For k < k0 there is the inverse energy cascade with ε and 

2/3 5/3( )  E k kn , k < k0 

 

The basic scales, at least in theory, do not depend 

on the sign of the energy cascade, whether it goes 

from larger scales to smaller once, direct, or vice versa – inverse cascade! 

Anyway, our calculations, Gledzer&Golitsyn, 2010, 

are quite illuminating the results of Kolmogorov (1935) 

showing how close he has approached the results of 1941 

which was first demonstrated by Obukhov in 1958 at Oxford, 
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International Symposium on air pollution (Adv. Geophys., 6, 1959) 

 

 

The most striking example of regularities in chaos 

is demonstrating the cumulative size distribution 

of lithospheric plates found by Bird (2003): 

 

    7   nN S S , n = 0.33.       (7) 

 

Bird has determined 52 plates with 6 large ones: Pacific (2.53), 

African (1.44), Antarctican (1.43), North American (1.37), Eurasian (1.20) 

and South American (1.20). These are of 1 By age or more. 

The rest have been formed during the breack of the last supercontinent 

about 100 My ago. The largest is Somali 0.47. Numbers are in steradians, 

the whole Earth’s surface is 4π steradians, or 1 str = 40.6 610  km2. RF is 0.42 str.  
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Cumulative distribution on areas of lithospheric plates by Bird (2003). 
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Cumulative distribution of plates by their areas has the dimension 

of frequency, or inverse time obtained from histograms 

 
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We have in Kolmogorov (1935) solution the scale 

2 3r ,        (3) 

the mean square of coordinate. Equate it to the plate area and obtain 
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 N S a
S

.      (8) 

An estimate of the energy generation rate ε for geotectonic and seismicity 

produces 1110   m2/s3 = 406 str s
-3, Golitsyn (2007). 

Compare (8) with estimate by Bird (7) and obtain the numerical coefficient a in (8) 

as a = 0.95   1. Einstein (1911) was saying that the right dimensional (here an exact) 

formula should have the numerical coefficients neither very small or large, better O(1). 



17 

 

 

 

 

 Kazansky A. B., Archiv of Glaciology, 19, 239, (1987). ( ) nD r ru , 2 / 3n  . 

 Taguchi, Y-h. Physica D, 80, 61 (1995). 5/3( ) E k ku  box of small balls. 

 Energy spectrum with no mean flow. 

 

 

 Galaxies, Golitsyn (2017), L luminocity, M mass, R size, U velocity, σ – random velocities. 

   510 L
M

 m2s-3  const for most of objects 

   3/L U R  Tully – Fisher (1977) or 3RL R U
M

 

    
1/3

 R  Golitsyn (2017)  Kolmogorov (1941) 
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There is a partial solution of (1) numbered (4): 

2 u   

we obtain that energy per unit mass in stochastic forcing increases 

with time linearly, result known for long time. The numerical coefficient 

at rhs may depend on similarity parameter(s) if any. In such a way  

a Gutenberg – Richter law for frequency size distribution of earthquakes 

was obtained (Golitsyn, 1996, 2001) for very strong quakes. For lesser quakes 

the coefficient depends on the similarity parameter: the ratio of the fault length 

to the width of the lithosphere. Analogously the energy spectrum of cosmic ray 

particles was explained (Golitsyn, 1998, 2005). 
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Burning gas mixture flame propagation (Gostintsev and Fortov, 2008) 

 

1/2( )u t  

3 1/2( )R t  

 

Here is nothing random, the same dependencies are dynamical and 

produced just from dimensional analysis. 
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Wind sea waves: complicated phenomenon. Detailed studies since 1960 for strategy purposes. The 

most striking discovery in 1978 Toba Y. The mean square of the peak wave height - the 

proportionality to the cube of its period 

3 3h T  

needs a simple fundamental explanation. Basic notions 

2
 gxF

U
, fetch, 

x distance from the leeward shore, U wind, g = 9.8 m/s2 
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Fetch laws: 


Uf p AF

g
, 1f Tp , wave period 

2
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U
, 

2

16
 

hs  - substantial wave height 

After dozens of field experiments 3  .  

After eliminating the fetch F from two experimental laws 
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The last relationship between growing with fetch the wave height 

and its period is the sequence of the random forcing by the wind spectral component 

of the water surface, reflecting slow growth of the second moment of the wave 

height with increasing time of the wave period. 

There are basic internal relationships in the wind waves established first empirically. 

The growth increase with time the first moments of velocity, i.e. of energy 

proportional to time and of the position as t3
 is the basic feature of the processes 

with permanent supply of energy. Another words were used by A. M. Obukhov: 

the diffusion at the velocity (or momentum) space, or random walks in such a space. 
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In 1933 A. N. Kolmogorov has published first paper on the stochastic motions of a particle. 

Next two years he was developing a basics for the theory of random motions 

combining the trajectories and velocities for particles under action of random forces. 

It is culminated in a two-page paper "Zufallige Bewegungen" Ann. Math. 35, 116-117, 1934. 

He considered there stochastic process with homogeneous probability p(r, u, τ) 

invariant to galilean transformations of the coordinate system. 

The Fokker – Planсk equation was derived: 
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The solution of this equation at the initial condition p(r, u, 0) = p(0, 0, 0) 
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with 2 , i iD u r  the diffusion coefficient in the velocity space, equal to ε 
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     Thank you for attention 


