

О соотношении динамики автогенератора с запаздывающей обратной связью и кольца связанных автогенераторов

Клиньшов Владимир Викторович

Институт Прикладной Физики РАН г. Н. Новгород

Chimera states in networks

Kuramoto and Battogtohk, 2002 Abrams and Strogatz, Phys. Rev. Lett 2004

$$\frac{\partial \phi}{\partial t} = \omega - \int_{-\pi}^{\pi} G(x - x') \sin[\phi(x, t) - \phi(x', t) + \alpha] dx'$$

Network \Rightarrow coherent and incoherent domains

Average frequencies

(Virtual) chimera states

Larger et al, Phys. Rev. Lett. 2013

$$\varepsilon x' = -\delta y - x + \beta f[x(s-1)]$$

$$y' = x$$

Coherent and incoherent phases

Space-time representation of a delayed dynamical system

$$\dot{x}(t) = F(x(t), x(t-\tau))$$

Arecchi et al, Phys. Rev. A 1992 Giacomelli et al, Phys. Rev. Lett. 1994 Giacomelli and Politi, Phys. Rev. Lett. 1996

$$\begin{split} t &= \sigma + \theta T \\ \sigma &\in [0, T] - (\text{pseudo}) \text{ space} \\ \theta &\in \mathcal{N} - (\text{slow}) \text{ time} \end{split}$$

(Virtual) chimera states

Larger et al, Phys. Rev. Lett. 2013

$$\varepsilon x' = -\delta y - x + \beta f[x(s-1)], \qquad y' = x$$

Coexistence of "coherent" and "incoherent" domains

Reservoir computing

Larger et al, Opt. Express 2012

Reservoir computing

Larger et al, Opt. Express 2012

Single oscillator vs. ring of oscillators

Rings (loops) in neuroscience

Wang, TRENDS in Neurosciences 2001

Reverberation as potential mechanism for working memory

Thalamocortical loop (and others)

Local cortical recurrent loops

Ring motifs in complex networks

Sums of delays along fundamental semicycles matter:

Reduction of delays

Lücken et al, EPL 2013

 $T3 = \tau 1 + \tau 8 + \tau 5 + \tau 2$

Chaotic synchronization

Kanter et al, EPL 2011

Single oscillator vs. ring of oscillators

Single oscillator vs. ring of oscillators

$$\frac{dx(t)}{dt} = f(x(t), x(t-\tau)) \quad (1) = \text{SINGLE}$$

$$\frac{dx_n(t)}{dt} = f(x_n(t), x_{n-1}(t-\sigma)) \quad (2) = \text{RING}$$

x(t) = h(t) is a *T*-periodic solution of (1) for $\tau = \tau_0$

then x(t) = h(t) also solves (1) for $\tau = \tau_0 + kT$

moreover, $x_n(t) = h(t + n\theta)$ is a solution of (2) for

 $\theta = MT/N$ and $\sigma = \tau_0 + kT - \theta$, where $M = 0, 1, \dots N-1$ is wave-number

Example: Van-der-Pol oscillator

$$\frac{d^2 x(t)}{dt^2} = \alpha [1 - x(t)^2] \frac{dx(t)}{dt} - x(t) + \kappa x(t - \tau)$$

Single oscillator

Periodic solution

Ring of oscillators

***** Periodic solutions of single oscillator \Rightarrow **Rotating waves in rings**

Single oscillator

$$\frac{d\delta(t)}{dt} = A(t)\delta(t) + B(t)\delta(t-\tau)$$
$$A(t) = \partial_1 f[h(t), h(t-\tau)]$$
$$B(t) = \partial_2 f[h(t), h(t-\tau)]$$

$$\delta(t) = p(t)e^{\lambda t}$$
 - Floquet ansatz

$$\frac{dp(t)}{dt} = [A(t) - \lambda \mathrm{Id}]p(t) + e^{-\lambda\tau}B(t)p(t-\tau)$$

Ring of oscillators

$$\frac{d\delta_n(t)}{dt} = \partial_1 f(h(t+n\theta), h(t+(n-1)\theta-\sigma))\delta_n(t) + \partial_2 f(h(t+n\theta), h(t+(n-1)\theta-\sigma))\delta_{n-1}(t-\sigma))$$

$$\delta_n(t) = r_n(t)e^{\lambda t} - \text{Floquet ansatz}$$

$$\frac{dr_n(t)}{dt} = [A(t+n\theta) - \lambda \text{Id}]r_n(t) + e^{-\lambda\sigma}B(t+n\theta)r_{n-1}(t-\sigma)$$

$$p_n(t) = r_n(t-n\theta) - \text{time shift}$$

$$p_n(t) = \sum_{m=1}^N \hat{p}_m(t)e^{2\pi i m n/N} - \text{Fourier transformation}$$

$$\frac{d\,\hat{p}_m(t)}{dt} = [A(t) - \lambda_m \mathrm{Id}]\hat{p}_m(t) + e^{-\lambda_m \sigma - i\psi_m} B(t)\hat{p}_m(t-\tau)$$

Ring of oscillators

$$\frac{d\hat{p}_{m}(t)}{dt} = [A(t) - \lambda_{m} \text{Id}]\hat{p}_{m}(t) + e^{-\lambda_{m}\sigma - i\psi_{m}}B(t)\hat{p}_{m}(t - \tau)$$
Single oscillator
$$\overline{\tau = \sigma + \theta}$$

$$\frac{dp(t)}{dt} = [A(t) - \lambda \text{Id}]p(t) + e^{-\lambda\tau}B(t)p(t - \tau)$$
Characteristic eq.
$$F(\lambda, e^{-\lambda\tau}) = 0$$
Yanchuk and Perlikowski, Phys. Rev. E 2009

Spectrum for large delays

Characteristic eq.

Single oscillator

$$F(\lambda, e^{-\lambda \tau}) = 0$$

"Weak" spectrum $\lambda = i\omega + \frac{\gamma}{\tau}$ $\omega = \omega(\gamma)$

Spectrum for large delays

Yanchuk and Perlikowski, Phys. Rev. E 2009

Characteristic eq.

Single oscillator

$$F(\lambda, e^{-\lambda \tau}) = 0$$

Ring of oscillators

$$F(\lambda, e^{-\lambda\sigma - i\psi_m}) = 0$$

The same "weak" spectrum

Stability of periodic solutions of single oscillator and rotating waves in ring (with all wave-numbers) is the same for large delays

Ring with instant coupling

$$\tau \Rightarrow \sigma = \tau - M/NT$$

 $\sigma = 0$: $\tau = M/NT$ - delay and period are resonant

Characteristic eq.

Single oscillator

$$F(\lambda, e^{-\lambda \tau}) = 0$$

Ring of oscillators with instant coupling

$$F(\lambda, e^{-i\psi_m}) = 0$$

* Stability of periodic solutions of single oscillator for large delays is sufficient for stability of rotating waves in ring with instant coupling

For large number of oscillators in ring N >> 1 it is also a necessary condition

Example: multi-jittering

Single oscillator with pulse delayed feedback $\frac{d\varphi}{dt} = 1 + Z(\varphi) \sum_{t_p} \delta(t - t_p - \tau)$

Multi-jittering waves

Bifurcation diagram for single oscillator

Jittering rotating waves

Jittering rotating waves

Conclusions

- Stability of periodic solutions of single oscillator and rotating waves in ring (with all wave-numbers) is the same for large delays
- Stability of periodic solutions of single oscillator for large delays is sufficient for stability of rotating waves in ring with instant coupling
- For large number of oscillators in ring N >> 1 it is also a necessary condition

Klinshov, V., Shchapin, D., Yanchuk, S., Wolfrum, M., D'Huys, O., Nekorkin, V. Embedding the dynamics of a single delay system into a feed-forward ring. *Physical Review E*, *96*, 42217 (2017)

Eckhaus instability

Wolfrum and Yanchuk, Phys. Rev. Lett 2006

$$z' = (\alpha + i\beta)z - z|z|^2 + z_{\tau}$$

Multiplicity of coexisting periodic attractors

Complex patterns

Giacomelli and Politi, Phys. Rev. Lett. 1996

$$\dot{y} = \mu y - (1 + i\beta) |y|^2 y + \eta y_d$$

