Гидрохимические параметры и методы их определения

Александр Полухин

Гидрохимия изучает абиотические компоненты экосистемы

ГИДРОХИМИЯ МОРСКИХ ВОД

ОРГАНИЧЕСКАЯ ХИМИЯ

ГЕОХИМИЯ ВОД

Биогенные элементы
Параметры карбонатной
системы
Растворенный кислород,
сероводород

Нефтепродукты ПАВ Фенолы Углеводороды Органический углерод Тяжелые металлы Взвесь

- Растворенный кислород это один из важнейших экологических параметров водной среды. Его содержание и степень насыщения им вод служат показателем биохимических процессов в морской воде, в частности активности фитопланктона.
- Биохимическое потребление кислорода (БПК5) это количество кислорода, израсходованного за определенное время при биохимическом окислении содержащегося в воде органического вещества в аэробных условиях. Величина биохимического потребления кислорода позволяет судить о содержании в воде легко окисляемых органических соединений и служит хорошим показателем загрязнения вод техногенными и бытовыми стоками.
- Методика определения титрование методом Винклера

- Водородный показатель pH является важной гидрохимической характеристикой. Она реагирует на протекание разнообразных химических и биохимических процессов в море, служит хорошей характеристикой окислительно-восстановительных реакций (ОВР). МО колориметрия, потенциометрия
- Величина общей щёлочности служит достаточно надежным индикатором вод различного происхождения и часто используется, как элемент трассер, особенно в зонах значительного выноса речных вод. Кроме этого, величина общей щёлочности служит основой для расчёта таких параметров карбонатной системы, как содержания растворённой двуокиси углерода, общего содержания растворённого неорганического углерода и содержания гидрокарбонат-иона в морской воде.

МО – титрование методом Бруевича

- Соединения фосфора (в частности фосфаты) можно считать определяющим биогенным элементом развития фитопланктона. Не случайно их содержание в морских водах часто является фактором, определяющим уровень продуктивности вод. Недостаток растворённых соединений фосфора оказывает сдерживающее влияние на рост морского фитопланктона, в то же время, высокие концентрации фосфора могут служить хорошим индикатором загрязнения вод бытовыми стоками или преобладания в водах процессов окисления органического вещества.
- МО колориметрия

- Растворенный неорганический кремний (силикаты SiO3) является достаточно консервативной гидрохимической характеристикой вод. Силикаты традиционно используются как элемент-трассер, их распределение позволяет судить о переносе водных масс и их генезисе. Кроме того, растворённые в воде соединения кремния служат основой для построения клеток многим массовым видам фитопланктона.
- МО колориметрия

ГИДРОХИМИЯ МОРСКИХ ВОД

• *Азот* в морской воде содержится в виде неорганических (нитраты, нитриты, соли аммония) и органических (гуминовые и фульвовые вещества, белки, аминокислоты, амины и другие) соединений.

При разложении отмершего органического вещества, в зависимости от степени окисления соединений азота, образуется следующий ряд: аммонийный азот (восстановленная форма), нитритный азот (промежуточная окисленная форма) и нитратный азот (наиболее окисленная форма).

MO – колориметрия (нитраты – восстановление и колориметрия)

Вершина эволюции гидрохимика — автоматический автоанализатор

