Когерентное усиление лазерных пучков в прямоугольном массиве слабосвязанных световодов

А.А. Балакин, С.А. Скобелев, А.В. Андрианов, Е.А. Анашкина, А.Г. Литвак

Институт прикладной физики РАН

Сессия по нелинейной динамике, 2020

Мотивация

Теория проще если ядра по кольцу.

HO! изготовление волокон с матрицей ядер проще.

Они дают более плотное заполнение ядер.

Основной недостаток: аналитические решения имеют сложный вид.

Дискретное нелинейное уравнение Шредингера Исходный Лагранжиан

$$\mathcal{L} = \iint \left[\frac{U^* \partial_z U - U \partial_z U^*}{2\mathrm{i}} - \epsilon |U|^2 - \frac{1}{2} |U|^4 \right] dz \, d\boldsymbol{x}.$$

Для волнового пучка $U = \sum u_n f(\boldsymbol{x} - \boldsymbol{x}_n)$, мы получаем

$$\mathcal{L} \approx \sum \int \left[\frac{u_n^* \partial_z u_n - u_n \partial_z u_n^*}{2i} - u_{n+1} u_n^* - u_{n+1}^* u_n - \frac{1}{2} |u_n|^4 \right] dz.$$

Уравнения для амплитуд полей в ядрах

$$i\partial_z u_n = u_{n+1} + u_{n-1} + |u_n|^2 u_n.$$

Интеграл задачи

$$P = \sum |u_n|^2 = \text{const.}$$

Длинноволновое приближение

Будем искать решение в виде $(n = 1 \dots N)$:

$$u_n(z) = s(n, z)e^{2iz} \quad u_n(z) = (-1)^n a(n, z)e^{-2iz}, \quad \frac{1}{|a|} \left| \frac{\partial a}{\partial n} \right|, \frac{1}{|s|} \left| \frac{\partial s}{\partial n} \right| \ll \pi$$

Приходим к уравнениям

$$i\frac{\partial s}{\partial z} + \frac{\partial^2 s}{\partial n^2} + |s|^2 s = 0, \quad i\frac{\partial a}{\partial z} - \frac{\partial^2 a}{\partial n^2} + |a|^2 a = 0,$$

$$s(0, z) = s(N+1, z) = a(0, z) = a(N+1, z) = 0.$$

Нас интересуют стационарные решения $a=a_0A(\varkappa n){\rm e}^{-{\rm i}\lambda z}$ и $s=a_0S(\varkappa n){\rm e}^{-{\rm i}\lambda z}$

$$\begin{split} & \frac{\partial^2 S}{\partial n^2} + \lambda S + S^3 = 0, \quad \Rightarrow \quad S = \operatorname{cn}(\varkappa n, m); \\ & -\frac{\partial^2 A}{\partial n^2} + \lambda A + A^3 = 0, \quad \Rightarrow \quad A = \operatorname{sn}(\varkappa n, m). \end{split}$$

Параметры находятся из уравнения

$$2m\varkappa^2 = a_0^2, \quad (N+1)\varkappa = 2K(m), \quad \lambda = (1+m)\varkappa^2.$$

Длинноволновое приближение. Асимптотики

Асимптотики для параметров:

$$m \approx \begin{cases} (N+1)^2 a_0^2 / 2\pi^2, & (N+1)a_0 \ll 4; \\ 1 - 16 e^{-(N+1)a_0/\sqrt{2}}, & (N+1)a_0 \gg 4; \end{cases}$$
$$\varkappa = \frac{2K(m)}{N+1} \approx \begin{cases} \frac{\pi}{N+1}, & (N+1)a_0 \ll 4; \\ a_0/\sqrt{2}, & (N+1)a_0 \gg 4. \end{cases}$$

Асимптотики для синфазного решения:

$$|s_n| = a_0 S \approx \begin{cases} a_0 \sin \frac{\pi n}{N+1}, & (N+1)a_0 \ll 4; \\ a_0 \delta_{n, \frac{N+1}{2}}, & (N+1)a_0 \gg 4. \end{cases}$$

Асимптотики для противофазного решения:

$$|a_n| = a_0 A \approx \begin{cases} a_0 \sin \frac{\pi n}{N+1}, & (N+1)a_0 \ll 4\\ a_0, & (N+1)a_0 \gg 4 \end{cases}$$

Длинноволновое приближение. Асимптотики

Асимптотики для параметров:

$$m \approx \begin{cases} (N+1)^2 a_0^2 / 2\pi^2, & (N+1)a_0 \ll 4; \\ 1 - 16 e^{-(N+1)a_0 / \sqrt{2}}, & (N+1)a_0 \gg 4, \end{cases}$$
$$\varkappa = \frac{2K(m)}{N+1} \approx \begin{cases} \frac{\pi}{N+1}, & (N+1)a_0 \ll 4; \\ a_0 / \sqrt{2}, & (N+1)a_0 \gg 4. \end{cases}$$

Асимптотики для синфазного решения:

$$|s_n| = a_0 S \approx \begin{cases} a_0 \sin \frac{\pi n}{N+1}, & (N+1)a_0 \ll 4; \\ a_0 \delta_{n, \frac{N+1}{2}}, & (N+1)a_0 \gg 4. \end{cases}$$

Асимптотики для противофазного решения:

$$|a_n| = a_0 A \approx \begin{cases} a_0 \sin \frac{\pi n}{N+1}, & (N+1)a_0 \ll 4; \\ a_0, & (N+1)a_0 \gg 4. \end{cases}$$

Устойчивость решений

Стохастичности нет если $\Delta \varphi = \max_n \left| |u_{n+1}|^2 - |u_n|^2 \right| = |u_2|^2 - |u_1|^2 < \pi$:

$$\Delta \varphi \le a_0^2 \left[\sin(2\varkappa, m)^2 - \sin(\varkappa, m)^2 \right] \approx a_0^2 \left[\tanh^2(\sqrt{2}a_0) - \tanh^2(a_0/\sqrt{2}) \right] < 0.8 \ll \pi.$$

Двойная цепочка

Решение легко обобщается на цепочку $2 \times N$:

 $u_{k,n} = (-1)^k a_n \exp(-\mathrm{i}z).$

Но возникает вопрос устойчивости при учете диагональных связей $\mu \ll 1$. Линеаризация для поля $u_{1,n} = a_0 \left[(-1)^n + \delta a e^{i\lambda z + i\varkappa n} \right] e^{ihz}$, $u_{2,n} = a_0 \left[(-1)^{n+1} + \delta b e^{i\lambda z + i\varkappa n} \right] e^{ihz}$ с $\delta a, \delta b \ll 1$:

$$\lambda_1^2 = 4(1 + \cos \varkappa)(1 - \mu)[a_0^2 + (1 - \mu)(1 + \cos \varkappa)],$$

$$\lambda_2^2 = 4[\cos \varkappa(1 + \mu) + 2 - \mu][a_0^2 + 2 - \mu + (1 + \mu)\cos \varkappa]$$

Неустойчивость возможна при $\mu > 1/2$.

В активной среде перестройка адиабатическая при

$$\gamma \ll \sin \frac{3\pi}{N+1} \sin \frac{\pi}{N+1} \approx \frac{3\pi^2}{(N+1)^2}.$$

Квадратные матрицы

В случае квадратных матриц $(n, m = 1 \dots N)$

$$i\frac{\partial u_{n,m}}{\partial z} + u_{n+1,m} + u_{n-1,m} + u_{n,m+1} + u_{n,m-1} + |u_{n,m}|^2 u_{n,m} - i\gamma u_{n,m} = 0$$

противофазное решение $u_{n,m} = (-1)^{n+m}g(n,m)$ также можно искать в длинноволновом приближении $|\partial g/\partial n|, |\partial g/\partial m| \ll \pi |g|$

$$i\frac{\partial g}{\partial z} - \frac{\partial^2 g}{\partial n^2} - \frac{\partial^2 g}{\partial m^2} + |g|^2 g = 0,$$

$$g(0,m) = g(n,0) = g(N+1,m) = g(n,N+1) = 0.$$

Однако, аналитические решения удается найти только в предельных случаях

$$g(n,m) \approx G \sin \frac{\pi n}{N+1} \sin \frac{\pi m}{N+1}, \quad |G|^2 \equiv \frac{4P}{(N+1)^2} \ll 1,$$
$$g(n,m) \approx G, \quad |G|^2 \equiv \frac{P}{N^2} \gg 1.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Квадратные матрицы $3 \times 3, \ldots$

Для любого заданного N симметрия дает малое число связанных уравнений:

Для 3 × 3:
$$|A|^2 + 4|B|^2 + 4|C|^2 = P$$
,
 $i\dot{A} = -4B + |A|^2A$,
 $i\dot{B} = -A - 2C + |B|^2B$,
 $i\dot{C} = -2B + |C|^2C$;
Для 4 × 4: $4|A|^2 + 8|B|^2 + 4|C|^2 = P$,
 $i\dot{A} = -2A - 2B + |A|^2A$,
 $i\dot{B} = -A - B - C + |B|^2B$,
 $i\dot{C} = -2B + |C|^2C$;
Для 5 × 5: $|A|^2 + 4|B|^2 + 4|C|^2 + 4|D|^2 + 8|E|^2 + 4|F|^2 = P$,
 $i\dot{A} = -4B + |A|^2A$,
 $i\dot{B} = -A - 2C - D + |B|^2B$,
 $i\dot{C} = -B - 2E + |C|^2C$,
 $i\dot{D} = -B - 2E + |C|^2D$,
 $i\dot{E} = -C - D - F + |E|^2E$,
 $i\dot{F} = -2E + |F|^2F$;

3

< ≣⇒

Аппроксимация амплитуд для матрицы 5×5

Нечетные N более устойчивы. Поэтому рассмотрим случай 5 × 5. Интересны стационарные решения $A = a e^{i\lambda z}$, $B = b e^{i\lambda z}$, $C = c e^{i\lambda z}$, $D = d e^{i\lambda z}$, $E = e e^{i\lambda z}$, $F = f e^{i\lambda z}$:

$$\begin{aligned} \lambda a - 4b + a^3 &= 0, \quad \lambda b - a - 2c - d + b^3 &= 0, \quad \lambda c - b - 2e + c^3 &= 0, \\ \lambda d - b - 2e + d^3 &= 0, \quad \lambda e - c - d - F + e^3 &= 0, \quad \lambda f - 2e + f^3 &= 0, \\ a^2 + 4b^2 + 4c^2 + 4d^2 + 8e^2 + 4f^2 &= P. \end{aligned}$$

Асимптотики при малых и больших мощностях:

$$\begin{split} \frac{b}{a} &\approx \frac{\sqrt{3}}{2} + \frac{7}{4} \frac{P}{12^2}, \quad \frac{c}{a} &\approx \frac{3}{4} + \frac{13\sqrt{3}}{8} \frac{P}{12^2}, \\ \frac{d}{a} &\approx \frac{1}{2} + \frac{7\sqrt{3}}{4} \frac{P}{12^2}, \quad \frac{e}{a} &\approx \frac{\sqrt{3}}{4} + \frac{25}{8} \frac{P}{12^2}, \\ \frac{f}{a} &\approx \frac{1}{4} + \frac{11\sqrt{3}}{8} \frac{P}{12^2}, \quad a &\approx \frac{\sqrt{P}}{3} - \frac{13P^{3/2}}{864\sqrt{3}} \ll 1. \end{split} \qquad \qquad \begin{array}{l} \frac{b}{a} &\approx 1 - \frac{5^4}{4P^2}, \quad \frac{c}{a} &\approx 1 - \frac{5^4}{2P^2}, \\ \frac{d}{a} &\approx \frac{e}{a} &\approx 1 - \frac{5^2}{4P}, \quad \frac{f}{a} &\approx 1 - \frac{5^2}{P}, \\ a &\approx \frac{\sqrt{P}}{5} + \frac{2}{\sqrt{P}} \gg 1. \\ \end{array}$$

Устойчивость для квадратных матриц

Исследуем устойчивость полученного решения при наличии диагональных связей $\mu \ll 1$. Уравнение для малых возмущений:

$$i\frac{\partial\delta}{\partial z} = h\delta + u_0^2(2\delta + \delta^*) + 2\left[\cos\varkappa_1 + \cos\varkappa_2 + 2\mu\cos\varkappa_1\cos\varkappa_2\right]\delta$$

дает дисперсионное соотношение

$$\Gamma^2 = u_0^2 - (\mathcal{K} + u_0^2)^2, \quad \mathcal{K} = 2\cos\varkappa_1 + 2\cos\varkappa_2 + 4\mu\cos\varkappa_1\cos\varkappa_2.$$

Значит неустойчивость возможна только при $\mu > 1/2$.

Наличие усиления $\gamma>0$ не разрушит адиабатическую перестройку моды если

$$\gamma \ll |h_{mn} - h_{\pm}| \quad \Rightarrow \quad \gamma \ll \sin \frac{3\pi}{N+1} \sin \frac{\pi}{N+1} \approx \frac{3\pi^2}{(N+1)^2}.$$

где $h_{mn} = 2\cos\frac{\pi m}{N+1} + 2\cos\frac{\pi n}{N+1}$ – постоянная распространения мод.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ▲ ■ * ⑦ Q @ 11/14

Матрица 5×5 и 11×11 с усилением

Проверим устойчивость в рамках более общего уравнения

$$\mathrm{i}k_0\frac{\partial\mathcal{E}}{\partial z} = \sqrt{k_0^2 n_0 + \Delta_{\perp}}\mathcal{E} + k_0^2 n_2 |\mathcal{E}|^2 \mathcal{E} + k_0^2 \delta n \, U(x,y)\mathcal{E}$$

Эксперимент

Выводы

Исследовано когерентное распространение и усиление мощного лазерного излучения в многоядерном волокне из $1 \times N$, $2 \times N$ и $N \times N$ массивов слабосвязанных ядер. Найдены точные устойчивые аналитические нелинейные решения в виде противофазного распределения, описывающей когерентное распространение волновых пучков в таких волокнах. Использование данных распределений позволяет оперировать лазерным излучением с мощностью до N^2 раз большей критической мощности самофокусировки в однородной среде. Аналитические результаты подтверждены прямым численным моделированием волнового уравнения. Найдены требования к активному волокну для устойчивого усиления найденной противофазной моды.

Публикации:

[1] A.A. Balakin, S.A. Skobelev, A.V. Andrianov, E.A. Anashkina and A.G. Litvak. Coherent amplification of high-power laser radiation in multicore fibers from a rectangular array of cores. Opt.Lett. (принято в печать);
[2] A.A. Balakin, S.A. Skobelev and A.G. Litvak. Coherent propagation of powerful out-of-phase wave beams in linear arrays of weakly coupled cores. EPL (принято в печать).