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NEWTON’S EQUATION g = F(Q)

Classical Mechanics (Newton, Hamilton): 2(o = C|[p, q]

oq=p, Op=F(q), H= %2 +U(q), F(9)=-U(q)

oq={q,H}, op={p,H}, {q,p} =1, dra={H,a}, acA.

Quantum Mechanics (Heisenberg): A = C(p, q),/(Pg — gp + ih)
04 -p. 0p—F@. H-E +u@. F@)--U@

9G = %[H, al, ap = %[H, Pl (@8] =in, da= 1 [H.dl, ac.
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
CLASSICAL, QUANTUM AND FREE ASSOCIATIVE MECHANICS
FREE ASSOCIATIVE OR PRE-QUANTUM MECHANICS

Pre-Quantum Mechanics or Free Associative Mechanics:
Free associative algebra 20 = C(p, g) with a derivation

O A A o(ab) =o(a)b+aoi(b), Yabe
Nonabelian Newton’s equations:
oq =p, op=F(q pge
Ho = [q, p] € A is a constant of motion
a([q.p]) = p* + aF(q) — F(q)q — p* =0

of the nonabelian Newton’s equations, but usual expression for the first
integal of energy H = %pz + U(q), F(q9) = —U'(q) is not a constant of
motion if F(q) # 0.
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Example: F(q) = g%, U(q) = —34°. Then
> H= %pz + U(q) is not a constant of motion

O(H) = 5(a(p)p + Po(p)) — 3(9(9)G? + 90:(9))q + 9°dr(q))

= §(pg? — 2qpq + ¢p) # 0.

» Nonabelian Newton’s equation has higher symmetries. In our case (F = g?) the
next symmetry is:

9-q = 3p> — 2pq® + qpg® + ¢*pg — 2¢°p

d-p = 2p2q® — pgpq — PGP + 29p?q — qpap + 2G°p? — 29°

In the commutative case H is a first integral and 9, = 6Hd;.
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
CLASSICAL, QUANTUM AND FREE ASSOCIATIVE MECHANICS
FREE ASSOCIATIVE OR PRE-QUANTUM MECHANICS

Algebra 2, as a C-linear space has an additive basis of monomials
Mon(2) = {p" ¢ p2 g2 .- p'mgm | ik, j €N}, N = Zsy,
and the number of monomials of a fixed degree nis growing exponentially, as 2.

In contrast, algebras 2y = 2,/(qgp — pq) and 2, = 2/ (pg — qp + ih) have additive
bases of standard monomials

Mon(24o) = Mon(2) = {p'q’ | i,j € N}
respectively, and the # of monomials of degree nis growing as n+ 1.

Any element of the quotient algebra 2(y or 215 can be uniquely represented by a
polynomial with standard monomials.
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
CLASSICAL, QUANTUM AND FREE ASSOCIATIVE MECHANICS
PROBLEM OF QUANTISATION, QUANTISATION IDEALS

Fact: Any associative C— algebra can be represented (is isomorphic to) a
quotient of a free algebra 2 over a two sided ideal J.

On my view the problem of quantisation of a dynamical system 0; : 2 — 2
can be formulated as following:
Find such ideals § C 2 that

Q1. The quotient algebra 2,3 has an additive basis of standard monomials.
In other words, we know how to change the order of any two variables.

Q2. %(3J) €J <« the evolutionary derivation d; induces a derivation of the
quotient algebra 2 /3.

Ideals J satisfying conditions Q1,Q2 are called quantisation ideals and the
corresponding quotient algebras 21 /J quantised algebras.
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In our example of the Newton equation on 2( a natural candidate for J which implies Q1
is

J=(J:=pg—wgp+ap+Bq+7), w,aB,v€C.
Then J = {>_aiJbi| a;, bj € 2} and Q2 (8:(J) C J) implies that
a(J) = F(Q)g+ p? —wp® —wqF(q) + aF(@) + BpeI=>w=1,a=8=0
and therefore J = pq — qp + +, where v € C.
If we add the reality arguments in the consideration we would conclude that ~ is pure

imaginary, i.e. v = ih and the Heisenberg quantisation is a unique possibility for the
free associative mechanics.

8/17



QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
QUANTISATION OF VOLTERRA AND BOGOYAVLENSKY SYSTEMS

VOLTERRA AND BOGOYAVLENSKY SYSTEMS

Let us consider nonabelian integrable systems: the Volterra chain (i) and the
Bogoyavlensky N—chains (ii)

N
() O = viu—wuu_y, (i) Gu=> (Ut — U ). (1)
k=1

These are infinite systems of equations.

We use standard notations

u=uo=u(nt), ug=ux(nt)=u(n+k,t), n,k € Z.

In equations (1) functions ux are elements of a free associative algebra

A =C{(...u_1,u,uy,...)with an infinite number of variables ux and a natural

automorphism S : 2 — 21, generated by the shift operator
S(uk) = Uk+1, k € Z, and 8;S = So;.

We begin with consideration of two-sided ideals J., C 2( generated by an
infinite set of polynomials of the form

Jo = ({Uqlp — wp,qUplig | P,q € Z, P> q, wpq e C*})

UpUq = wq,pUqUp, q>p, wpq#0.
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
QUANTISATION OF VOLTERRA AND BOGOYAVLENSKY SYSTEMS
QUANTISATION OF THE VOLTERRA SYSTEMS

PROPOSITION

Volterra system 0:u = uiu — uu—, can be restricted to 215 , if and only if
Wptin =@, wpm=1, n—m > 2.

UplUpi1 = QUnytUn,  UpUm = UmlUpn, |Nn—m| > 2.

The non-abelian Volterra system has a symmetry

du
4 UU_1U_2 + UU_1U_1 + UUU_1 — U1UU — UtU1U — UpUy U. (2)
.
PROPOSITION

Equation (2) can be restricted to 215, only in the following cases:

(a) UpUny1 = alpyqUn, UnUm = Umln,

n—m>2
(b)  UnUnt1 = (—1)"QUni1Un,  Uplm = —UmUn, =
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Periodic closures of the chains vy = uk with period M result in nonabelian systems
on M =C(U1,...,UM>.
Let M = 3. Then the Volterra system

Uyt = UaUy — Uyls, Upt = Uzlp — UpUy, U3t = UU3 — Uzlz
an obvious constant of motion H = uy + u» + u3 and infinitely many commuting
symmetries

U = USUs + UhUglp + U1 U3 — LpUZ — UBUy — UslaUy,

Uy, = USUs + U2Uglp + UZUZ + Uy Up Uy Us + Uy Usliy Us + Uy UsU3
Uy UglpUs + Uy UB U + Uy US — Up U3 — Up Uy Uply — Up Uy Uz Uy
2,2 3 2 2
—Upuy — Uyl — UpUglpUy — Uglp Uy — Ugls Uy — Ugla Uy
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
QUANTISATION OF VOLTERRA AND BOGOYAVLENSKY SYSTEMS
QUANTISATION OF THE PERIODIC VOLTERRA CHAINS

Periodic Volterra systems with period M may admit inhomogeneous
commutation relations:

M
UqUp = wp,qUpUq + ZU;,qu + Mo, 1<g<p<M, wpq#0.

r=1

PROPOSITION

Nonabelian periodical Volterra chain with period M admits Jy—quantisation iff
the following commutation relations

M=3: Uplpi1 = aUpirUn+ BU+ Ut + W)+ 1, NE Zs;
M=4: U1U2=OCU2U1+5U2+’)/U1 —ﬁ'y,

UyUs = Ugly — BUp + [,

Usly = ol Ug + BUs + yUy — By,

UpUs = alizUp + Blp + yUs — 37,

UpUs = Uslp — yU3 + U1,

Usly = aligls + BUs + yUz — B;
M>5: Up1Un = alplpyq,

UpUm = UmUp, |Nn—m| > 1, n,m € Zy.

take place. The constants o, 3,v,n € C, « # 0 are arbitrary.
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In the case M = 3 the ideal of quantisation has three parameters of quantisation
J3 = (Unlp1 — alpyrtn — B(U+ Uy + U2) —n|n € Zs, a #0).
On 21y, the quantum Volterra system can be written as
1
Ukt = E[H’uk]’ H=u +u + us.
The symmetry 0-, on 243, is not independent:

uk,T1 =

2(a—1
<Uk,rH + Hu ¢ + u“k,t) .

1
14+ a a+1
The system admits a Casimir operator ([C, ux] = 0, k € Z3):

cC = (a2 — Nugtouy + (B + B)(Uguy + UsUy + Uslp)
+aﬁu12 + a—1ﬂu§ + aﬁu%
+ut(an + B2 +n) + ux(a™"n + B2 + ) + uz(an + 52 + 7).
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
QUANTISATION OF VOLTERRA AND BOGOYAVLENSKY SYSTEMS
QUANTISATION OF THE BOGOYAVLENSKY SYSTEMS

PROPOSITION
Nonabelian N—chain dyu = Yh_, (uxu — uu_x) admits
Jw = ({UgUp — wp,qUpUg | P, q € Z, p > q, wp,q € CX}) quantisation only in the case

wnyk,n =, where 1<k <N, a#0, and wpm=1, for n—m> N.

UnUpyk = alpikn, 1< k<N UnUm = UmUp, |n—m| > N.

PROPOSITION
There exists a modification

Ut = UpUg UP + Uy UU_1U — UULUU_1 — UPU_1U_>

of the nonabelian N = 2 Bogoyavlensky chain. It admits J.,—quantisation only in the
case

=il =il
W3ni1,3m = @&, W3pi23m =B, Wapzam=o B,
a,Be€C*, n>m, nme Z.

1 -1
UzmUsni1 = alzni1Usm, UsmUsni2 = BUsnioUsm, UsmUsniz = ' B~ 'Uspiglsm, N2> m.
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In algebra 24 = K(u, v) we consider ideals
J=(vu—auv -8 —Bu—~v—n)
and systems of two quadratic homogeneous equations

Ut = a1UP + aolV + asVU + agV?, @)
Vi = B1V2 + BaVU + Bauv + Ball?
possesing a hierarchy of symmetries.

Let us first consider equations (3) possesing a cubic symmetry

Ur = YU 4+ 2UPV + y3UVU + 74 VUP + ysUVZ + vgvuv + y7v2U + v V3,
Ve = 81U° + G2UPV + S3UvU + 64VUP + SsuV? + Sgvuv + §7v2u + dgv°

(4)
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
QUANTISATION OF NON-ABELIAN HOMOGENEOUS QUADRATIC SYSTEMS
QUANTISATION OF QUADRATIC SYSTEMS WITH A CUBIC SYMMETRY

PROPOSITION

Any non-triangular system (3) possessing a non-zero cubic symmetry of the form (4) is
equivalent to one of the following systems which admits a quantisation ideal J
generated by the comutation relation:

2

U = U2 — uv

Aq: = uv = wu,
Vi = V2 + vu— uv

us = uv

Ay
2 Vi = wvu

VU = auv, H=au-—v,

up = u? — uv

VU = uv —yU+~yv H=uv—~u
= 12 — YU+, v

Vi=Vv24+uv—wu

U =uv —vu

As :
g Vi=u2+uv—wu

Vu=uv+ou?+pu+n ?

uy = v2

Ag : 2 VU= uv+n, H=v3— 48,

IVE { Up ==LV VU = uv — v, H=uv+~u

Vi=Uu

where a, 8,7, d,n € K are arbitrary constants and « # 0 and H is the Hamiltonian.
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QUANTISATION OF DYNAMICAL SYSTEMS ON FREE ALGEBRAS. QUANTISATION IDEALS
QUANTISATION OF NON-ABELIAN HOMOGENEOUS QUADRATIC SYSTEMS
QUANTISATION OF QUADRATIC SYSTEMS WITH A QUARTIC SYMMETRY

PROPOSITION

Any non-triangular system (3) possessing a symmetry of degree four, but not of a qubic
one admit J quantisation with the following commutation relations:

ur = —uv . - 2
B { vi=V2+ v uv=w-+~v, H=2uv+u +~u
ur=—wu . _ P
B, { V= V2 4 v uv =wu+~vv, H=2uv+us+~u+2yv
B up = U —2vu VU= uv + H = u?v — uv?
3 vi=v2 — 2w - i - ’
2
ut = uc —uv —2vu . =
B4 { Vi=Vv2 —2uv—wu vu= v,
— R
ur = u= —2uv _ -
Bs { vi= V2 + 4w vu=uv,
where v, n € K are arbitrary constants.
Heisenberg equations:
KUy = [H7 U], KVt = [H7 V]'

By: k=-2y, By: k=-2v, B3: k=n.
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