Unstable modes near NLS Akhmediev breather

P. G. Grinevich², P.M. Santini¹

¹Dipartimento di Fisica, Università di Roma "La Sapienza" and Istituto Nazionale di Fisica Nucleare, Sezione di Roma

²Steklov Mathematical Institute, Moscow, Russia L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia, Lomonosov Moscow State University, Russia. The author was supported by RSF grant No 18-11-00316

XXIX Scientific session of the Nonlinear Dynamics Council of RAS, December 14, 2020,

Rogue waves

Rogue waves (freak waves, anomalous waves) in the ocean the great short-living waves appearing from almost nowhere.

Figure: Akademik loffe ship, Drake Straight

・ロト ・雪ト ・ヨト・

The RW recurrence in the periodic setting has been recently observed in experiments in water waves [Onorato et al '13], in fiber optics [Trillo et al '18], and in a photorefractive crystal:

Pierangeli D., Flammini M., Zhang L., Marcucci G., Agranat A.J., Grinevich P.G., Santini P.M., Conti C., DelRe E. "Observation of Fermi-Pasta-Ulam-Tsingou recurrence and its exact dynamics", Physical Review X, 2018, v. 8, issue 4, p. 041017 (9 pages); doi:10.1103/PhysRevX.8.041017;

The symmetric 3-wave interferometric scheme used to generate the background wave with a single-mode perturbation propagating in a pumped photorefractive KLTN (potassium-lithium-tantalate-niobate) crystal. Since NLS $i\psi_z + \psi_{xx} + 2|\psi|^2\psi = 0$ is supposed to describe the above physics only at the leading order, one expects that the exact NLS RW recurrence be replaced by a "Fermi-Pasta-Ulam" - type recurrence, before thermalization destroys the pattern.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

We study the anomalous waves on the focusing NLS equation (SfNLS) with periodic boundary conditions:

$$iu_t + u_{xx} + 2u^2\bar{u} = 0$$

We use the following Cauchy data (anomalous waves Cauchy problem):

$$u(x,0) = a + \epsilon v(x), \quad v(x+L) \equiv v(x), \quad |\epsilon| \ll 1,$$
$$v(x) = \sum_{j \ge 1} \left(c_j e^{ik_j x} + c_{-j} e^{-ik_j x} \right), \quad k_j = \frac{2\pi}{L} j, \quad |c_j| = O(1),$$

To simplify calculations we also assume that the period *L* is generic: $L \neq \pi n, n \in \mathbb{Z}$.

イロト イポト イヨト イヨト

Unstable modes

The unstable background: ($\epsilon = 0$):

$$u_0(x,t) = ae^{2i|a|^2t}$$

The first N harmonics are unstable, where

$$N = \left[\frac{|a|L}{\pi}\right]$$

with the growing factors in the linear mode are:

$$\sigma_j = |a|k_j \sqrt{4|c_0|^2 - k_j^2}, \ 1 \le j \le N,$$

All other modes are stable. They give only small corrections and we discard them.

We assume: $\pi/|a| < L < 2\pi/|a|$ i.e. we have exactly one unstable mode. Therefore:

$$u(x,0) = a\left(1 + \epsilon \left(c_1 e^{k_1 x} + c_{-1} e^{-ik_1 x}\right)\right), \quad k_1 = \frac{2\pi}{L}, \quad \epsilon \ll 1,$$

The unstable mode is described by Riemann theta functions of 2 variables. **They are rather complicated.**

But for this special Cauchy data it admits a good approximation as a sequence of Akhmediev breathers (Grinevich–Santini).

Akhmediev breathers:

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, "Exact first order solutions of the Nonlinear Schdinger equation", Theor. Math. Phys, 72, 809 (1987).

$$\begin{aligned} \mathcal{A}(x,t;\theta,X,T) &= \\ &= a \ e^{2i|a|^2 t} \cdot \frac{\cosh[\sigma(\theta)(t-T)+2i\theta]+\sin\theta\cos[k(\theta)(x-X)]}{\cosh[\sigma(\theta)(t-T)]-\sin\theta\cos[k(\theta)(x-X)]} \,, \\ &k_1 &= k(\theta) = 2|a|\cos\theta, \ \sigma(\theta) &= k(\theta) \sqrt{4|a|^2-k^2(\theta)} = 2|a|^2\sin(2\theta), \end{aligned}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Akhmediev breathers

They are spatially periodic and localized in time:

The x coordinate axis marked red, the t coordinate axis marked green. In the future we draw only one period of solution with respect to x.

One unstable mode

Approximation of the genus 2 solution:

$$u(x,t) = \sum_{m=0}^{n} \mathcal{A}(x,t;\phi_{1},x^{(m)},t^{(m)}) e^{i\rho^{(m)}} - \frac{1-e^{4in\phi_{1}}}{1-e^{4i\phi_{1}}} a e^{2i|a|^{2}t}, \ x \in [0,L],$$

with the following parameters, expressed in terms of elementary functions:

$$\begin{aligned} x^{(m)} &= X^{(1)} + (m-1)\Delta X, \quad t^{(m)} = T^{(1)} + (m-1)\Delta T, \\ X^{(1)} &= \frac{\arg \alpha}{k_1} + \frac{L}{4}, \quad \Delta X = \frac{\arg(\alpha\beta)}{k_1}, \quad (\mod L), \\ T^{(1)} &\equiv \frac{1}{\sigma_1} \log \left(\frac{\sigma_1^2}{2|a|^4 \epsilon |\alpha|} \right), \quad \Delta T = \frac{1}{\sigma_1} \log \left(\frac{\sigma_1^4}{4|a|^8 \epsilon^2 |\alpha\beta|} \right), \\ \rho^{(m)} &= 2\phi_1 + (m-1)4\phi_1, \quad n = \left[\frac{T - T^{(1)}}{\Delta T} + \frac{1}{2} \right], \\ \cos \phi_1 &= \frac{\pi}{L|a|}, \quad \alpha = e^{-i\phi_1}\overline{c_1} - e^{i\phi_1}c_{-1}, \quad \beta = e^{i\phi_1}\overline{c_{-1}} - e^{-i\phi_1}c_{1}, \\ &= 1 + e^{-i\phi_1}c_{-1}, \quad \beta = e^{i\phi_1}\overline{c_{-1}} - e^{-i\phi_1}c_{-1}, \quad \beta = e^{i\phi_1}\overline{c_{-1}} - e^{-i\phi_1}c_{-1}, \\ &= 1 + e^{-i\phi_1}c_{-1}, \quad \beta = e^{i\phi_1}\overline{c_{-1}} - e^{-i\phi_1}c_{-1}, \quad \beta = e^{i\phi_1}c_{-1}, \quad \beta = e^{i\phi_$$

One unstable mode

The spectra curve has genus g = 2 and 6 branch points: E_0 , E_1 , E_2 , \overline{E}_0 , \overline{E}_1 , \overline{E}_2 . The pair E_1 , E_2 is obtained as a results of splitting the resonant point $\lambda_1 = i|a| \sin \phi_1$:

$$E_l = \lambda_1 + (-1)^l \frac{\epsilon |a|^2}{2\lambda_1} \sqrt{\alpha \beta} + O(\epsilon^2), \ l = 1, 2,$$

Figure: Right: the exact spectrum; Left: the approximating curve.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

One unstable mode

Generic solutions correspond to "long tori".

The Akhmediev breather corresponds to the rational curve:

$$E_1 = E_2, \ \bar{E}_1 = \bar{E}_2.$$

For Akhmediev breather we have a **homoclinic (whiskered)** torus:

Figure: *x*-dynamics corresponds to the motion along the short cycle, *t*-dynamics corresponds to the motion along the infinite cycle

The first appearance of Akhmediev breather is very stable. In contrast, the recurrence is very sensitive to perturbations of Cauchy data or equations.

Effect of small loss/gain

$$iu_t + u_{xx} + 2u^2 \bar{u} = -ivu, \ u = u(x,t), \ v \in \mathbb{R}, \ |v| \ll 1.$$

was recently analytically studied in:

Coppini F., Grinevich P.G., Santini P.M. "The effect of a small loss or gain in the periodic NLS anomalous wave dynamics. I" - Phys. Rev. E, 2020, v.101, No 3, 032204, 8 pages, - Published 6 March 2020; doi:10.1103/PhysRevE.101.032204.

A (B) < (B) < (B) < (B) </p>

Our aim was to explain the results of experimental and numerical observations:

O. Kimmoun, H.C. Hsu, H. Branger, M.S. Li, Y.Y. Chen, C. Kharif, M. Onorato, E.J.R. Kelleher, B. Kibler, N. Akhmediev, A. Chabchoub, "Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence", *Scientific Reports*, **6**, Article number: 28516 (2016), doi:10.1038/srep28516.

J.M. Soto-Crespo, N. Devine, and N. Akhmediev, "Adiabatic transformation of continuous waves into trains of pulses", *PHYSICAL REVIEW A*, **96**, 023825 (2017).

Generic initial data:

Figure: $-L/2 \le x \le L/2$, $0 \le t \le 100$, L = 6, $\epsilon = 10^{-4}$, generic initial data: $c_1 = 0.5$ and $c_{-1} = 0.15 - 0.2i$. Form left to right: $\nu = 0$, $\nu = 10^{-9}$, and $\nu = 10^{-5}$. The first appearance is essentially the same in all the three cases.

Symmetric initial data:

Figure: The density plot of |u(x, t)| with $-L/2 \le x \le L/2$, $0 \le t \le 100$, L = 6, $\epsilon = 10^{-4}$, for a real initial condition $(c_{-j} = \overline{c_j}, \forall j)$, with $c_1 = 0.3 + 0.4i$. Consequently $\alpha\beta > 0$. Left picture: $\nu = 0$, then $\Delta X = 0$. Center picture: $\nu = 10^{-9}$; then for $\tilde{m} = 6$, Q_m changes its sign, from positive to negative values; correspondingly, ΔX_m switches from 0 to L/2. Right picture: $\nu = 10^{-5}$; then all Q_m are negative and $\Delta X_m = L/2$ $\forall m$. The first appearance is essentially the same in all the three cases. The effect of strong losses was discussed in :

H. Segur, D. Henderson, J. Carter, J. Hammack, C.-M. Li, D. Pheiff, and K. Socha, "Stabilizing the Benjamin-Feir instability", *J. Fluid Mech.* 539, 229 (2005).

The background is unstable if:

$$\cos \phi_1 = \frac{\pi}{L|a|}, \Rightarrow \left|\frac{L|a|}{\pi}\right| > 1.$$

If *a* decays fast enough, at some moment the background become stable.

We were interested in the opposite situation: $v \sim \epsilon^2$ and |a| is almost connstant, but the recurrence **changes essentially.**

Analytic formulas.

We have the following approximate formulas the spectral curve is not time-invariant, but it changes each time we have an anomalous wave:

$$(E_1 - E_2)^2 \bigg|_{t=0} = -\frac{\epsilon^2 |a|^2 \alpha \beta}{\sin^2 \phi_1},$$
$$(E_1^{(m)} - E_2^{(m)})^2 = -\frac{\epsilon^2 |a|^2 \alpha \beta}{\sin^2 \phi_1} + 4m\nu \cot \phi_1, \ m \ge 0,$$

where $E_1^{(m)}$, $E_2^{(m)}$ are the branch points after the mth-th breather. Therefore:

$$\Delta X_m := \tilde{x}^{(m+1)} - \tilde{x}^{(m)} = \frac{\arg(Q_m)}{k_1} \pmod{L},$$

$$\Delta T_m := \tilde{t}^{(m+1)} - \tilde{t}^{(m)} = \frac{1}{\sigma_1} \log\left(\frac{\sigma_1^4}{4\epsilon^2 |Q_m|}\right),$$

$$\epsilon^2 Q_m = \epsilon^2 \alpha \beta - \frac{\nu \sigma_1}{|a|^4} m, \quad m \ge 1, \tag{1}$$

Evolution of the branch points

Figure: Evolution of the branch points

• 3 >

Symmetric initial data numerics vs analytics:

- $\tilde{t}^{(1)} = 5.51209 \text{ (theory)}$ $\Delta T_1 = 11.18230 \text{ (theory)}$ $\Delta T_2 = 11.40337 \text{ (theory)}$ $\Delta T_3 = 11.77375 \text{ (theory)}$ $\Delta T_4 = 13.31847 \text{ (theory)}$ $\Delta T_5 = 11.84989 \text{ (theory)}$ $\Delta T_6 = 11.44140 \text{ (theory)}$ $\Delta T_7 = 11.20765 \text{ (theory)}$ $\Delta T_8 = 11.04319 \text{ (theory)}$
- $\tilde{t}^{(1)} = 5.51208$ (numerics)
- $\Delta T_1 = 11.18230$ (numerics)
- $\Delta T_2 = 11.40338$ (numerics);
- $\Delta T_3 = 11.77376$ (numerics);
- $\Delta T_4 = 13.31848$ (numerics);
- $\Delta T_5 = 11.84988$ (numerics);
- $\Delta T_6 = 11.44142$ (numerics);
- $\Delta T_7 = 11.20766$ (numerics);
- $\Delta T_8 = 11.04320$ (numerics)

Linear perturbation stability of Akhmediev breathers was studied in:

A. Calini, C.M. Schober, "Dynamical criteria for rogue waves in nonlinear Schrödinger models", *Nonlinearity*, **25**:12 (2012) R99–R116; doi:10.1088/0951-7715/25/12/R99.

A. Calini, C.M. Schober, "Observable and reproducible rogue waves", J. Opt. 15 (2013) 105201 (9pp).

A. Calini, C.M. Schober, "Numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger equation", Nat. Hazards Earth Syst. Sci., 14, 14311440, 2014 www.nat-hazards-earth-syst-

sci.net/14/1431/2014/doi:10.5194/nhess-14-1431-2014.

Linear perturbation theory near Akhmediev breather

To simplify formulas we use the following gauge transformation.

$$\begin{split} u(x,t) &\to \exp(2it)u(x,t), \quad \vec{\psi} \to \exp(i\sigma_3 t)\vec{\psi}, \text{ and} \\ &iu_t + u_{xx} + 2|u|^2u - 2u = 0. \\ \text{Let } \vec{\phi} &= \left(\begin{array}{c} \phi_1(\lambda,x) \\ \phi_2(\lambda,x) \end{array}\right), \vec{\psi} = \left(\begin{array}{c} \psi_1(\lambda,x) \\ \psi_2(\lambda,x) \end{array}\right) \text{ be Lax pair eigenfunctions} \end{split}$$

with the same λ . Then the squared eigenfinctions:

$$\begin{split} &\left\langle \vec{\psi}(\lambda, x, t), \vec{\varphi}(\lambda, x, t) \right\rangle_{+} := \psi_{1}(\lambda, x, t)\varphi_{1}(\lambda, x, t) + \overline{\psi_{2}(\lambda, x, t)\varphi_{2}(\lambda, x, t)}, \\ &\left\langle \vec{\psi}(\lambda, x, t), \vec{\varphi}(\lambda, x, t) \right\rangle_{-} := i \left[\psi_{1}(\lambda, x, t)\varphi_{1}(\lambda, x, t) - \overline{\psi_{2}(\lambda, x, t)\varphi_{2}(\lambda, x, t)} \right] \end{split}$$

satisfy the linearized NLS equation

$$iw_t + w_{xx} + 4|u|^2w + 2u^2\bar{w} - 2w = 0.$$

Linear perturbation theory near Akhmediev breather

In the aforementioned papers it was shown that if we have N unstable modes and nonlinear superpositions of M Akhmediev breathers, $M \le N$ then

- If not all unstable modes are exited (M < N) then there exist x-periodic squared eigenfunctions exponentially growing in t;
- If all unstable modes are exited (M = N) then all *x*-periodic with the period *L* squared eigenfunctions are bounded in *t*;

Therefore the following conclusion was made:

- If not all unstable modes are exited (M < N), the solution is unstable;</p>
- If all unstable modes are exited (M = N) then one has "saturation of instabilities".

But the second conclusion contradicts our results, because **small** perturbations generate recurrence.

イロト イポト イヨト イヨト

We obtained the following resolution of the paradox (we studied the case M = N = 1): P.G. Grinevich, P.M. Santini, "The linear and nonlinear instability of the Akhmediev breather", arXiv:2011.11402.

Due to presence of non-removable double points the spectral decomposition of linerized NLS solutions includes not only *x*-periodic squared eigenfunctions, but also some special combinations of derivatives with respect to the spectral parameter.

Let us demonstrate the "missed modes".

A (1) < A (2) < A (2) </p>

For $u_0 = 1$ we use the following basis of eigenfunctions:

$$\vec{\psi}_0^{\pm}(\lambda, x, t) = \begin{bmatrix} \sqrt{\mu \mp \lambda} \\ \pm \sqrt{\mu \pm \lambda} \end{bmatrix} e^{\pm \theta}, \ \theta = i\mu x + 2i\mu\lambda t, \ \mu^2 = \lambda^2 + 1.$$

Let us denote

$$\vec{q}(\lambda) = \begin{bmatrix} q_1(\lambda) \\ q_2(\lambda) \end{bmatrix} = \begin{bmatrix} \sqrt{\mu - \lambda} e^{\theta(\lambda)} + \sqrt{\mu + \lambda} e^{-\theta(\lambda)} \\ \sqrt{\mu + \lambda} e^{\theta(\lambda)} - \sqrt{\mu - \lambda} e^{-\theta(\lambda)} \end{bmatrix},$$
$$\vec{r}(\lambda) = \begin{bmatrix} r_1(\lambda) \\ r_2(\lambda) \end{bmatrix} = \begin{bmatrix} \sqrt{\mu - \lambda} e^{\theta(\lambda)} - \sqrt{\mu + \lambda} e^{-\theta(\lambda)} \\ \sqrt{\mu + \lambda} e^{\theta(\lambda)} + \sqrt{\mu - \lambda} e^{-\theta(\lambda)} \end{bmatrix},$$
$$\vec{\phi}(\lambda) = \begin{bmatrix} \phi_1(\lambda) \\ \phi_2(\lambda) \end{bmatrix} = \begin{bmatrix} 1 \\ (\mu + \lambda) \end{bmatrix} e^{\theta(\lambda)}$$

The unstable modes correspond to the pure imaginary part of the spectrum:

$$\mu \in \mathbb{R}, \quad \lambda \in i\mathbb{R}, \ |\lambda| \leq 1.$$

The resonant point is:

$$\lambda_{1} = \sqrt{\mu_{1}^{2} - 1}, \quad \mu_{1} = \frac{k_{1}}{2} = \frac{\pi}{L},$$

$$k = k_{1} = 2\mu_{1}, \quad \sigma = \sigma_{1} = -4i\lambda_{1}\mu_{1}, \quad \theta(\lambda_{1}) = \frac{1}{2}(ikx - \sigma t).$$

Denote

$$ec{q}=ec{q}(\lambda_1), \ \ ec{r}=ec{r}(\lambda_1),$$

The Darboux transformation operator is defined by:

$$\mathbf{A} = (\lambda - \lambda_1)\mathbf{E} + rac{2\lambda_1}{|q_1|^2 + |q_2|^2} \left[\begin{array}{c} -\overline{q_2} \\ \overline{q_1} \end{array}
ight] [-q_2, q_1],$$

Operator **A** maps the background eigenfunctions to the eigenfunctions for the Akhmediev breather.

$$ec{\psi}(\lambda) = \mathbf{I} ec{\psi}_0(\lambda)$$

A (10) A (10)

Here Akhmediev breather reads:

$$u(x,t) = \frac{(\lambda_1^2 + \mu_1^2)\cosh(\sigma t) + i\lambda_1\sin(kx) + 2\mu_1\lambda_1\sinh(\sigma t)}{\cosh(\sigma t) - i\lambda_1\sin(kx)}.$$

Let us denote

$$\vec{\chi}_{+}(\lambda) = \mathbf{\Pi} \vec{q}(\lambda), \ \vec{\chi}_{-}(\lambda) = \mathbf{\Pi} \vec{r}(\lambda), \ \tilde{\phi}(\lambda) = \mathbf{\Pi} \phi(\lambda),$$

 $f^{(n)}(x,t) := D^{n}_{\mu} f(\lambda, x, t) \Big|_{\lambda = \lambda_{1}},$

where

$$\mathcal{D}_{\mu} = \partial_{\mu} + rac{\partial\lambda}{\partial\mu}\partial_{\lambda} = \partial_{\mu} + rac{\mu}{\lambda}\partial_{\lambda}.$$

The last formula takes into account that $\lambda = \sqrt{\mu^2 - 1}$.

The **real** derivatives of the squared eigenfunctions also satisfy linearized NSL. We consider the following combinations:

$$\begin{split} (D_{\mu} + D_{\bar{\mu}}) \langle \chi_{+}(\lambda), \chi_{-}(\lambda) \rangle_{\pm} \Big|_{\lambda = \lambda_{1}} &= \left\langle \chi_{+}^{(1)}, \chi_{-}^{(0)} \right\rangle_{\pm}, \\ (D_{\mu} + D_{\bar{\mu}})^{2} \langle \chi_{+}(\lambda), \chi_{-}(\lambda) \rangle_{\pm} \Big|_{\lambda = \lambda_{1}} &= \left\langle \chi_{+}^{(2)}, \chi_{-}^{(0)} \right\rangle_{\pm} + 2 \left\langle \chi_{+}^{(1)}, \chi_{-}^{(1)} \right\rangle_{\pm}, \\ (D_{\mu} + D_{\bar{\mu}}) \left\langle \tilde{\phi}(\lambda), \tilde{\phi}(\lambda) \right\rangle_{\pm} \Big|_{\lambda = \lambda_{1}} &= 2 \left\langle \tilde{\phi}^{(1)}, \tilde{\phi}^{(0)} \right\rangle_{\pm}, \end{split}$$

.

۰.

ヘロト 人間 ト 人間 ト 人間 トー

Main statement The following combinations of the derivatives of the squared eigenfunctions with respect to the spectral parameter:

$$\begin{split} \text{Sym}_{1} &= -2\lambda_{1}^{2} \bigg[\mu_{1} \left(\left\langle \chi_{+}^{(2)}, \chi_{-}^{(0)} \right\rangle_{+} + 2 \left\langle \chi_{+}^{(1)}, \chi_{-}^{(1)} \right\rangle_{+} \right) - 4 \left\langle \chi_{+}^{(1)}, \chi_{-}^{(0)} \right\rangle_{+} - 16 \left\langle \phi_{+}^{(1)}, \phi_{-}^{(0)} \right\rangle_{+} \bigg], \\ \text{Sym}_{2} &= -2\lambda_{1}^{2} \bigg(\left\langle \chi_{+}^{(2)}, \chi_{-}^{(0)} \right\rangle_{-} + 2 \left\langle \chi_{+}^{(1)}, \chi_{-}^{(1)} \right\rangle_{-} + \frac{2\mu_{1}}{\lambda_{1}^{2}} \left\langle \chi_{+}^{(1)}, \chi_{-}^{(0)} \right\rangle_{-} \bigg), \end{split}$$

where have the following properties:

- They are *x*-periodic with period *L*;
- They exponentially grow as $t \to \pm \infty$;
- They are solutions of the linearized NLS near the Akhmediev breather.

Therefore they represent the "missed modes".

伺下 イヨト イヨト

Maple calculation:

Text (Math) 🗈 20 hepet 🔹 (12 🗸 B 👔 🖳 🖾 🔚 👔 🔚 👔 🔚	
$ \begin{array}{c} > \\ > F(1); \\ 1 (1 + 1) + (1$	(0.7)
$-\frac{2}{4}\left(k\left(-16\sinh(\sigma t)\cos(3kx)k^{2}+8\sinh(\sigma t)\cos(3kx)k^{2}-\sinh(\sigma t)\cos(3kx)k^{2}-24\sinh(\sigma t)\cos(kx)k^{2}+\sinh(\sigma t)\cos(kx)k^{2}+\sinh(\sigma t)\cos(kx)k^{2}\right)\right)$	(37)
$-32 \sigma \sinh(2 \sigma t) k^{2} + 8 \sigma \sinh(2 \sigma t) k^{4} + 48 \sinh(3 \sigma t) \cos(kx) k^{2} - 16 \sinh(3 \sigma t) \cos(kx) k^{4} + 64 \sinh(\sigma t) \cos(kx) k^{2} + 641 k \sin(2 kx) - 481 k^{3} \sin(2 kx) + 81 k^{5} \sin(2 kx) + 641 \cos(2 kx) k^{2} - 321 \cos(2 kx) k^{4} + 41 \cos(2 kx) k^{5} - 641 \cosh(2 \sigma t) k^{2} + 481 \cosh(2 \sigma t) k^{4} - 81 \cosh(2 \sigma t) k^{2} + 481 k^{5} \sin(2 kx) + 641 k \cosh(2 \sigma t) k^{4} - 81 \cosh(2 \sigma t) k^{2} + 1281 k^{2} - 481 k^{4} + 41 k^{5} + 32 \sigma \sinh(2 \sigma t) \sin(2 kx) k - 8 \sigma \sinh(2 \sigma t) \sin(2 kx) k^{3} + 641 \sigma \cos(kx) \cosh(\sigma t) + 161 \sigma \cosh(3 \sigma t) \cos(kx) + 641 k \cosh(2 \sigma t) \sin(2 kx) - 481 k^{3} \cosh(2 \sigma t) \sin(2 kx) + 81 k^{5} \cosh(2 \sigma t) \sin(2 kx) - 161 \sigma \cosh(\sigma t) \cos(k x) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{4} - 481 \sigma \cos(kx) \cosh(\sigma t) k^{4} + 81 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \cosh(3 \sigma t) \cos(k x) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{4} + 16 \sigma \sin(2 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{2} + 101 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \cos(kx) k^{2} - 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} + 161 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{2} + 401 \sigma \cos(kx) \cosh(\sigma t) k^{5} - 161 \sigma \sin(3 \sigma t) \sin(2 kx) k^{5} + 401 \sigma \cos(kx) \sin(\delta t) k^{5} - 161 \sigma \sin(\delta t) \sin(\delta t) \sin(\delta t) k^{5} - 161 \sigma \sin(\delta t) \sin(\delta t) \sin(\delta t) k^{5} - 161 \sigma \sin(\delta t) $	
$- \frac{1921t\cos(kx)\sinh(\sigma t)k^2 + 801t\cos(kx)\sinh(\sigma t)k^2 + 81\sigma\cosh(\sigma t)\cos(3kx)k^2 - 1\sigma\cosh(\sigma t)\cos(3kx)k^2 - 81t\cos(kx)\sinh(\sigma t)k^2)}{12}$	
$\left(4\cosh(\sigma t)^{2}k+4\sigma\sin(kx)\cosh(\sigma t)+4k-k^{2}-4\cos(kx)^{2}k+\cos(kx)^{2}k^{2}\right)$	
> <i>Ef</i> 21;	
$-\frac{1}{2}\left(\log \sinh(\sigma t) \sin(3 k x) k^4 + 208 \sigma t \sinh(\sigma t) \sin(k x) k^4 - 24 \sigma t \sinh(\sigma t) \sin(k x) k^5 - 256 k^2 \sigma t \sinh(\sigma t) \sin(k x) - 81 \sigma \sinh(\sigma t) \sin(3 k x) k^2 - 256 k^2 \sigma t \sinh(\sigma t) \sin(k x) - 81 \sigma \sinh(\sigma t) \sin(3 k x) k^2 - 24 \sigma t \sinh(\sigma t) \sin(k x) k^2 - 256 k^2 \sigma t \sinh(\sigma t) \sin(k x) - 81 \sigma \sinh(\sigma t) \sin(k x) k^2 - 24 \sigma t \sinh(\pi t) \sin(k x) \sin(k $	(38)
+ 40 1 σ sinh(σ t) sin(k x) k ² - 3 1 σ sinh(σ t) sin(k x) k ⁴ + 16 1 σ sinh(3 σ t) sin(k x) k ² - 304 1 k ⁵ t cosh(σ t) sin(k x) + 241 k ⁸ t cosh(σ t) sin(k x) + 128 1 σ t cosh(2 σ t) k ³ - 96 1 σ t cos(2 k x) k ³ - 321 σ t cosh(2 σ t) k ⁵ + 161 σ t cos(2 k x) k ⁵ + 1088 1 k ⁴ t cosh(σ t) sin(k x) + 128 1 σ t cosh(2 σ t) k ³ - 321 σ t cosh(2 σ t) k ⁵ + 161 σ t cos(2 k x) k ⁵ + 1088 1 k ⁴ t cosh(σ t) sin(k x) + 128 1 σ t cosh(2 σ t) k ³ - 321 σ t cosh(2 σ t) k ⁵ + 161 σ t cos(2 k x) k ⁵ + 1088 1 k ⁴ t cosh(σ t) sin(k x) + 128 1 σ	
$-10241k^{2}t\cosh(\sigma t)\sin(kx)+1281\sigma t\cos(2 kx)k-1281\sigma t\cosh(2 \sigma t)k-641\sinh(2 \sigma t)k+32\sigma \cosh(2 \sigma t)\cos(2 kx)k$	
$-8\sigma \cosh(2\sigma t) \cos(2kx) k^{3} - 2561\sigma t k + 641 \sinh(2\sigma t) \cos(2kx) k + 161\sigma \sinh(\sigma t) \sin(3kx) + 2561 k^{3}t\sigma - 321 k^{5}t\sigma$	
$-48 \operatorname{I} \sinh(2\sigma t) \cos(2kx) k^{3} + 8 \operatorname{I} \sinh(2\sigma t) \cos(2kx) k^{5} - 64 \operatorname{I} \sigma \sinh(\sigma t) \sin(kx) - 16 \operatorname{I} \sigma \sinh(3\sigma t) \sin(kx) - 64 \sigma k$	
+ 16 $k^2 \cosh(\sigma t) \sin(3 k x) + 32 \sigma \cos(2 k x) k - 64 \sigma \cosh(2 \sigma t) k - 320 \sin(k x) k^2 \cosh(\sigma t) - 48 k^2 \cosh(3 \sigma t) \sin(k x) + 56 k^4 \sin(k x) \cosh(\sigma t) - 3 \sin(k x) k^5 \cosh(\sigma t) - 8 k^4 \cosh(\sigma t) \sin(3 k x) + k^5 \cosh(\sigma t) \sin(3 x x) + 16 k^4 \cosh(\sigma t) \sin(3 x x) + 16 k^4 \cosh(3 \sigma t) \sin(k x) - 8 \sigma \cos(2 k x) k^3 - 256 t \sinh(2 \sigma t) k^3$	
$+ 192 t \sinh(2 \sigma t) k^5 - 32 t \sinh(2 \sigma t) k^7 + 641 k^2 \sinh(2 \sigma t))/(4 \cosh(\sigma t)^2 k + 4 \sigma \sin(k x) \cosh(\sigma t) + 4 k - k^2 - 4 \cos(k x)^2 k + \cos(k x)^2 k^3)$	-
	-
	*

Memory: 1789.92N Time: 733.71s Nath Node

Linearized NLS substitution:

Let us shift the spatial varibale $x \rightarrow x - L/4$. We obtain:

$$u(x,t) = \frac{(2k^2 - \sigma^2)\cosh(\sigma t) + ik^2\sigma\sinh(\sigma t) + k\sigma\cos(kx)}{k(2\cosh(\sigma t)k - \sigma\cos(kx))}$$

The even part of $\widehat{\text{Sym}}_1$ is bounded in *t*. Denote by $\widehat{\text{Sym}}_1$ the odd part of Sym_1 . We have

$$\widehat{\text{Sym}}_{1}(x,t) = \frac{1}{2} \left(\text{Sym}_{1}(x,t) - \text{Sym}_{1}(-x,t) \right)$$
$$\widehat{\text{Sym}}_{1}(x,t) = k \frac{\widehat{\text{Num}}_{1}(x,t)}{\mathcal{D}(x,t)}$$

Solution Sym₂ becomes even in x, and reads

$$\operatorname{Sym}_2(x,t) = \frac{\operatorname{Num}_2(x,t)}{\operatorname{Den}(x,t)}$$

A (1) × A (2) × A (2) × A

$$\begin{split} \widehat{\operatorname{Num}}_{1}(x,t) &= \left\{ \left[48\sigma k^{4} - 8\sigma k^{6} \right] \cosh(\sigma t) + \left[192ik^{4} + 8ik^{8} - 80ik^{6} \right] \sinh(\sigma t) \right\} t \sin(kx) + \\ &+ \left\{ \left[8i\sigma k^{2} - i\sigma k^{4} - 16i\sigma \right] \cosh(\sigma t) + \left[8k^{4} - 16k^{2} - k^{6} \right] \sinh(\sigma t) \right\} \sin(3kx) + \\ &+ \left\{ \left[- 48ik^{3} + 64ik + 8ik^{5} \right] \cosh(2\sigma t) + \left[32\sigma k - 8\sigma k^{3} \right] \sinh(2\sigma t) + \\ &+ \left[8ik^{5} - 48ik^{3} + 64ik \right] \right\} \sin(2kx) + \\ &+ \left\{ \left[- 16i\sigma + 16i\sigma k^{2} \right] \cosh(3\sigma t) + \left[- 64i\sigma + 40i\sigma k^{2} - ik^{4}\sigma \right] \cosh(\sigma t) + \\ &+ \left\{ 16k^{4} - 48k^{2} \right] \sinh(3\sigma t) + \left[- 64k^{2} - k^{6} + 24k^{4} \right] \sinh(\sigma t) \right\} \sin(kx), \end{split}$$

 $\mathsf{Den}(x,t) = 4\left[4\,k\cosh^2(\sigma\,t) - 4\,\sigma\,\cosh(\sigma\,t)\,\cos(k\,x) + k(4-k^2)\cos^2(kx)\right]$

イロト イヨト イヨト イヨト

크

$$\begin{aligned} \operatorname{Num}_{2}(x,t) &= \left\{ 256i\sigma k - 192ik^{3}\sigma + 32ik^{5}\sigma \right\} t \cos(2kx) + \\ &+ \left\{ \left[2176ik^{4} + 48ik^{8} - 2048ik^{2} - 608ik^{6} \right] \cosh(\sigma t) + \left[416\sigma k^{4} - 48\sigma k^{6} - 512\sigma k^{2} \right] \sinh(\sigma t) \right\} t \cos(kx) + \\ &- 64k \left\{ \left[6k^{4} - 8k^{2} - k^{6} \right] \sinh(2\sigma t) + \left[4i\sigma k^{2} - ik^{4}\sigma - 4i\sigma \right] \cosh(2\sigma t) + \left[- ik^{4}\sigma + 8i\sigma k^{2} - 8i\sigma \right] \right\} t + \\ &+ \left\{ \left[- 2k^{6} - 32k^{2} + 16k^{4} \right] \cosh(\sigma t) + \left[- 2i\sigma k^{4} + 16i\sigma k^{2} - 32i\sigma \right] \sinh(\sigma t) \right\} \cos(3kx) + \\ &+ \left\{ \left[64\sigma k - 16\sigma k^{3} \right] \cosh(2\sigma t) + \left[- 96ik^{3} + 128ik + 16ik^{5} \right] \sinh(2\sigma t) + \left[64\sigma k - 16\sigma k^{3} \right] \right\} \cos(2kx) + \\ &+ \left\{ \left[- 96k^{2} + 32k^{4} \right] \cosh(3\sigma t) + \left[- 640k^{2} + 112k^{4} - 6k^{6} \right] \cosh(\sigma t) + \\ &+ \left[32i\sigma k^{2} - 32i\sigma \right] \sinh(3\sigma t) + \left[- 6i\sigma k^{4} + 80i\sigma k^{2} - 128i\sigma \right] \sinh(\sigma t) \right\} \cos(kx) - \\ &- 64k \left\{ \left[2ik^{2} - 2i \right] \sinh(2\sigma t) - 2\sigma \cosh(2\sigma t) - 2\sigma \right\}, \end{aligned}$$

 $\mathsf{Den}(x,t) = 4 \left[4 \, k \cosh^2(\sigma \, t) - 4 \, \sigma \, \cosh(\sigma \, t) \, \cos(k \, x) + k (4 - k^2) \cos^2(kx) \right].$

イロト イヨト イヨト イヨト

크