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Rogue waves

Rogue waves (freak waves, anomalous waves) in the ocean the
great short-living waves appearing from almost nowhere.

Figure: Akademik Ioffe ship, Drake Straight
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Rogue waves
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The RW recurrence in the periodic setting has been recently
observed in experiments in water waves [Onorato et al ’13], in fiber
optics [Trillo et al ’18], and in a photorefractive crystal:

Pierangeli D., Flammini M., Zhang L., Marcucci G., Agranat A.J.,
Grinevich P.G., Santini P.M., Conti C., DelRe E. “Observation of
Fermi-Pasta-Ulam-Tsingou recurrence and its exact dynamics”,
Physical Review X, 2018, v. 8, issue 4, p. 041017 (9 pages);
doi:10.1103/PhysRevX.8.041017;

P. G. Grinevich, P.M. Santini Unstable modes near NLS Akhmediev breather



The symmetric 3-wave interferometric scheme used to generate
the background wave with a single-mode perturbation propagating
in a pumped photorefractive KLTN
(potassium-lithium-tantalate-niobate) crystal.
Since NLS iψz + ψxx + 2|ψ|2ψ = 0 is supposed to describe the
above physics only at the leading order, one expects that the exact
NLS RW recurrence be replaced by a “Fermi-Pasta-Ulam” - type
recurrence, before thermalization destroys the pattern.
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Mathematical model – Focusing NLS

We study the anomalous waves on the focusing NLS equation
(SfNLS) with periodic boundary conditions:

iut + uxx + 2u2ū = 0

We use the following Cauchy data (anomalous waves Cauchy
problem):

u(x, 0) = a + εv(x), v(x + L) ≡ v(x), |ε| � 1,

v(x) =
∑
j≥1

(
cje ikjx + c−je−ikjx

)
, kj =

2π
L

j, |cj | = O(1),

To simplify calculations we also assume that the period L is
generic: L , πn, n ∈ Z.
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Unstable modes

The unstable background: (ε = 0):

u0(x, t) = ae2i|a |2t .

The first N harmonics are unstable, where

N =

[
|a |L
π

]
with the growing factors in the linear mode are:

σj = |a |kj

√
4|c0|

2 − k 2
j , 1 ≤ j ≤ N,

All other modes are stable. They give only small corrections and
we discard them.

We assume: π/|a | < L < 2π/|a | i.e. we have exactly one unstable
mode. Therefore:

u(x, 0) = a
(
1 + ε

(
c1ek1x + c−1e−ik1x

))
, k1 =

2π
L
, ε � 1,
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Akhmediev breathers

The unstable mode is described by Riemann theta functions of 2
variables. They are rather complicated.

But for this special Cauchy data it admits a good approximation as
a sequence of Akhmediev breathers (Grinevich–Santini).

Akhmediev breathers:

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first
order solutions of the Nonlinear Schdinger equation”, Theor. Math.
Phys, 72, 809 (1987).

A(x, t ; θ,X ,T) =

= a e2i|a |2t
·

cosh[σ(θ)(t − T) + 2iθ] + sin θ cos[k(θ)(x − X)]

cosh[σ(θ)(t − T)] − sin θ cos[k(θ)(x − X)]
,

k1 = k(θ) = 2|a | cos θ, σ(θ) = k(θ)
√

4|a |2 − k 2(θ) = 2|a |2 sin(2θ),
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Akhmediev breathers

They are spatially periodic and localized in time:

The x coordinate axis marked red, the t coordinate axis marked
green. In the future we draw only one period of solution with
respect to x.
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One unstable mode

Approximation of the genus 2 solution:

u(x, t) =
n∑

m=0

A

(
x, t ; φ1, x(m), t(m)

)
e iρ(m)

−
1 − e4inφ1

1 − e4iφ1
ae2i|a |2t , x ∈ [0, L ],

with the following parameters, expressed in terms of elementary
functions:

x(m) = X (1) + (m − 1)∆X , t(m) = T (1) + (m − 1)∆T ,

X (1) =
arg α

k1
+

L
4
, ∆X =

arg(αβ)

k1
, ( mod L),

T (1) ≡
1
σ1

log

 σ2
1

2|a |4ε|α|

 , ∆T =
1
σ1

log

 σ4
1

4|a |8ε2|αβ|

 ,
ρ(m) = 2φ1 + (m − 1)4φ1, n =

⌈
T − T (1)

∆T
+

1
2

⌉
,

cos φ1 =
π

L |a |
, α = e−iφ1c1 − e iφ1c−1, β = e iφ1c−1 − e−iφ1c1,
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One unstable mode

The spectra curve has genus g = 2 and 6 branch points: E0, E1,
E2, Ē0, Ē1, Ē2. The pair E1, E2 is obtained as a results of splitting
the resonant point λ1 = i|a | sin φ1:

El = λ1 + (−1)l ε|a |
2

2λ1

√
αβ + O(ε2), l = 1, 2,
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Figure: Right: the exact spectrum; Left: the approximating curve.
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One unstable mode

Generic solutions correspond to “long tori”.
The Akhmediev breather corresponds to the rational curve:

E1 = E2, Ē1 = Ē2.

For Akhmediev breather we have a homoclinic (whiskered)
torus:

x

t

Figure: x-dynamics corresponds to the motion along the short cycle,
t-dynamics corresponds to the motion along the infinite cycle
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Effect of small loss/gain

The first appearance of Akhmediev breather is very stable. In
contrast, the recurrence is very sensitive to perturbations of
Cauchy data or equations.

Effect of small loss/gain

iut + uxx + 2u2ū = −iνu, u = u(x, t), ν ∈ R, |ν| � 1.

was recently analytically studied in:

Coppini F., Grinevich P.G., Santini P.M. “The effect of a small loss
or gain in the periodic NLS anomalous wave dynamics. I” - Phys.
Rev. E, 2020, v.101, No 3, 032204, 8 pages, - Published 6 March
2020; doi:10.1103/PhysRevE.101.032204.
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Samll loss/gain – experiments and numerics:

Our aim was to explain the results of experimental and numerical
observations:

O. Kimmoun, H.C. Hsu, H. Branger, M.S. Li, Y.Y. Chen, C. Kharif,
M. Onorato, E.J.R. Kelleher, B. Kibler, N. Akhmediev, A.
Chabchoub, “Modulation Instability and Phase-Shifted
Fermi-Pasta-Ulam Recurrence”, Scientific Reports, 6, Article
number: 28516 (2016), doi:10.1038/srep28516.

J.M. Soto-Crespo, N. Devine, and N. Akhmediev, “Adiabatic
transformation of continuous waves into trains of pulses”,
PHYSICAL REVIEW A, 96, 023825 (2017).
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Generic initial data:
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Figure: −L/2 ≤ x ≤ L/2, 0 ≤ t ≤ 100, L = 6, ε = 10−4, generic initial
data: c1 = 0.5 and c−1 = 0.15 − 0.2i. Form left to right: ν = 0, ν = 10−9,
and ν = 10−5. The first appearance is essentially the same in all the
three cases.
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Symmetric initial data:
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Figure: The density plot of |u(x, t)| with −L/2 ≤ x ≤ L/2, 0 ≤ t ≤ 100,
L = 6, ε = 10−4, for a real initial condition (c−j = cj , ∀j), with
c1 = 0.3 + 0.4i. Consequently αβ > 0. Left picture: ν = 0, then ∆X = 0.
Center picture: ν = 10−9; then for m̃ = 6, Qm changes its sign, from
positive to negative values; correspondingly, ∆Xm switches from 0 to
L/2. Right picture: ν = 10−5; then all Qm are negative and ∆Xm = L/2
∀m. The first appearance is essentially the same in all the three cases.
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Strong and weak losses.

The effect of strong losses was discussed in :
H. Segur, D. Henderson, J. Carter, J. Hammack, C.-M. Li, D. Pheiff,
and K. Socha, “Stabilizing the Benjamin-Feir instability”, J. Fluid
Mech. 539, 229 (2005).

The background is unstable if:

cos φ1 =
π

L |a |
, ⇒

∣∣∣∣∣L |a |π
∣∣∣∣∣ > 1.

If a decays fast enough, at some moment the background become
stable.

We were interested in the opposite situation: ν ∼ ε2 and |a | is
almost connstant, but the recurrence changes essentially.
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Analytic formulas.

We have the following approximate formulas the spectral curve is
not time–invariant, but it changes each time we have an
anomalous wave:

(E1 − E2)2

∣∣∣∣∣∣
t=0

= −
ε2|a |2αβ

sin2 φ1
,

(E(m)
1 − E(m)

2 )2 = −
ε2|a |2αβ

sin2 φ1
+ 4mν cot φ1, m ≥ 0,

where E(m)
1 ,E(m)

2 are the branch points after the mth-th breather.
Therefore:

∆Xm := x̃(m+1) − x̃(m) =
arg(Qm)

k1
( mod L),

∆Tm := t̃(m+1) − t̃(m) = 1
σ1

log
(

σ4
1

4ε2 |Qm |

)
,

ε2Qm = ε2αβ −
νσ1

|a |4
m, m ≥ 1, (1)
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Evolution of the branch points

Figure: Evolution of the branch points
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Symmetric initial data numerics vs analytics:

0

100

3−3

t

x

t̃(1) = 5.51209 (theory) t̃(1) = 5.51208 (numerics)
∆T1 = 11.18230 (theory) ∆T1 = 11.18230 (numerics)
∆T2 = 11.40337 (theory) ∆T2 = 11.40338 (numerics);
∆T3 = 11.77375 (theory) ∆T3 = 11.77376 (numerics);
∆T4 = 13.31847 (theory) ∆T4 = 13.31848 (numerics);
∆T5 = 11.84989 (theory) ∆T5 = 11.84988 (numerics);
∆T6 = 11.44140 (theory) ∆T6 = 11.44142 (numerics);
∆T7 = 11.20765 (theory) ∆T7 = 11.20766 (numerics);
∆T8 = 11.04319 (theory) ∆T8 = 11.04320 (numerics)
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Linear perturbation theory near Akhmediev breather

Linear perturbation stability of Akhmediev breathers was studied
in:
A. Calini, C.M. Schober, “Dynamical criteria for rogue waves in
nonlinear Schrödinger models”, Nonlinearity, 25:12 (2012)
R99–R116; doi:10.1088/0951-7715/25/12/R99.
A. Calini, C.M. Schober, “Observable and reproducible rogue
waves”, J. Opt. 15 (2013) 105201 (9pp).
A. Calini, C.M. Schober, “Numerical investigation of stability of
breather-type solutions of the nonlinear Schrödinger equation”,
Nat. Hazards Earth Syst. Sci., 14, 14311440, 2014
www.nat-hazards-earth-syst-
sci.net/14/1431/2014/doi:10.5194/nhess-14-1431-2014.

P. G. Grinevich, P.M. Santini Unstable modes near NLS Akhmediev breather



Linear perturbation theory near Akhmediev breather

To simplify formulas we use the following gauge transformation.

u(x, t)→ exp(2it)u(x, t), ~ψ→ exp(iσ3t)~ψ, and

iut + uxx + 2|u|2u − 2u = 0.

Let ~φ =

(
φ1(λ, x)
φ2(λ, x)

)
, ~ψ =

(
ψ1(λ, x)
ψ2(λ, x)

)
be Lax pair eigenfuntions

with the same λ. Then the squared eigenfinctions:〈
~ψ(λ, x, t), ~ϕ(λ, x, t)

〉
+

:= ψ1(λ, x, t)ϕ1(λ, x, t) + ψ2(λ, x, t)ϕ2(λ, x, t),〈
~ψ(λ, x, t), ~ϕ(λ, x, t)

〉
−

:= i
[
ψ1(λ, x, t)ϕ1(λ, x, t) − ψ2(λ, x, t)ϕ2(λ, x, t)

]
satisfy the linearized NLS equation

iwt + wxx + 4|u|2w + 2u2w̄ − 2w = 0.
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Linear perturbation theory near Akhmediev breather

In the aforementioned papers it was shown that if we have N
unstable modes and nonlinear superpositions of M Akhmediev
breathers, M ≤ N then

1 If not all unstable modes are exited (M < N) then there exist
x-periodic squared eigenfunctions exponentially growing in t ;

2 If all unstable modes are exited (M = N) then all x-periodic
with the period L squared eigenfunctions are bounded in t ;

Therefore the following conclusion was made:
1 If not all unstable modes are exited (M < N), the solution is

unstable;
2 If all unstable modes are exited (M = N) then one has

“saturation of instabilities”.

But the second conclusion contradicts our results, because small
perturbations generate recurrence.
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Linear perturbation theory near Akhmediev breather

We obtained the following resolution of the paradox (we studied
the case M = N = 1):
P.G. Grinevich, P.M. Santini, “The linear and nonlinear instability of
the Akhmediev breather”, arXiv:2011.11402.

Due to presence of non-removable double points the spectral
decomposition of linerized NLS solutions includes not only
x-periodic squared eigenfunctions, but also some special
combinations of derivatives with respect to the spectral parameter.

Let us demonstrate the “missed modes”.
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The “missed modes”

For u0 = 1 we use the following basis of eigenfunctions:

~ψ±0 (λ, x, t) =

[ √
µ ∓ λ

±
√
µ ± λ

]
e±θ, θ = iµx + 2iµλt , µ2 = λ2 + 1.

Let us denote

~q(λ) =

[
q1(λ)
q2(λ)

]
=

[√
µ − λ eθ(λ) +

√
µ + λ e−θ(λ)

√
µ + λ eθ(λ) −

√
µ − λ e−θ(λ)

]
,

~r(λ) =

[
r1(λ)
r2(λ)

]
=

[ √
µ − λ eθ(λ) −

√
µ + λ e−θ(λ)

√
µ + λ eθ(λ) +

√
µ − λ e−θ(λ)

]
,

~φ(λ) =

[
φ1(λ)
φ2(λ)

]
=

[
1

(µ + λ)

]
eθ(λ)

The unstable modes correspond to the pure imaginary part of the
spectrum:

µ ∈ R, λ ∈ iR, |λ| ≤ 1.
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The “missed modes”

The resonant point is:

λ1 =
√
µ2

1 − 1, µ1 =
k1

2
=
π

L
,

k = k1 = 2µ1, σ = σ1 = −4iλ1µ1, θ(λ1) =
1
2

(ikx − σt) .

Denote
~q = ~q(λ1), ~r = ~r(λ1),

The Darboux transformation operator is defined by:

D = (λ − λ1)E +
2λ1

|q1|
2 + |q2|

2

[
−q2

q1

]
[−q2, q1],

Operator D maps the background eigenfunctions to the
eigenfunctions for the Akhmediev breather.

~ψ(λ) = D~ψ0(λ)
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The “missed modes”

Here Akhmediev breather reads:

u(x, t) =
(λ2

1 + µ2
1) cosh(σt) + iλ1 sin(kx) + 2µ1λ1 sinh(σt)

cosh(σt) − iλ1 sin(kx)
.

Let us denote

~χ+(λ) = D~q(λ), ~χ−(λ) = D~r(λ), φ̃(λ) = Dφ(λ),

f (n)(x, t) := Dn
µ f(λ, x, t)

∣∣∣∣∣∣
λ=λ1

,

where

Dµ = ∂µ +
∂λ

∂µ
∂λ = ∂µ +

µ

λ
∂λ.

The last formula takes into account that λ =
√
µ2 − 1.
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The “missed modes”

The real derivatives of the squared eigenfunctions also satisfy
linearized NSL. We consider the following combinations:

(Dµ + Dµ̄)
〈
χ+(λ), χ−(λ)

〉
±

∣∣∣
λ=λ1

=
〈
χ

(1)
+ , χ

(0)
−

〉
±
,

(Dµ + Dµ̄)2 〈
χ+(λ), χ−(λ)

〉
±

∣∣∣
λ=λ1

=
〈
χ

(2)
+ , χ

(0)
−

〉
±

+ 2
〈
χ

(1)
+ , χ

(1)
−

〉
±
,

(Dµ + Dµ̄)
〈
φ̃(λ), φ̃(λ)

〉
±

∣∣∣∣
λ=λ1

= 2
〈
φ̃(1), φ̃(0)

〉
±
,
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The “missed modes”

Main statement The following combinations of the derivatives of
the squared eigenfunctions with respect to the spectral parameter:

Sym1 = −2λ2
1

[
µ1

(〈
χ

(2)
+ , χ

(0)
−

〉
+

+ 2
〈
χ

(1)
+ , χ

(1)
−

〉
+

)
− 4

〈
χ

(1)
+ , χ

(0)
−

〉
+
− 16

〈
φ

(1)
+ , φ

(0)
−

〉
+

]
,

Sym2 = −2λ2
1

( 〈
χ

(2)
+ , χ

(0)
−

〉
−

+ 2
〈
χ

(1)
+ , χ

(1)
−

〉
−

+ 2µ1

λ2
1

〈
χ

(1)
+ , χ

(0)
−

〉
−

)
,

where have the following properties:

They are x-periodic with period L ;

They exponentially grow as t → ±∞;

They are solutions of the linearized NLS near the Akhmediev
breather.

Therefore they represent the “missed modes”.
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The “missed modes”

Maple calculation:
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The “missed modes”

Linearized NLS substitution:
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The “missed modes”

Let us shift the spatial varibale x → x − L/4. We obtain:

u(x, t) =
(2k 2 − σ2) cosh(σt) + ik 2σ sinh(σt) + kσ cos(kx)

k(2 cosh(σt)k − σ cos(kx))

The even part of Ŝym1 is bounded in t . Denote by Ŝym1 the odd
part of Sym1. We have

Ŝym1(x, t) =
1
2

(Sym1(x, t) − Sym1(−x, t))

Ŝym1(x, t) = k
N̂um1(x, t)
D(x, t)

Solution Sym2 becomes even in x, and reads

Sym2(x, t) =
Num2(x, t)
Den(x, t)
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The “missed modes”

N̂um1(x, t) =

{[
48σk 4 − 8σk 6

]
cosh(σt) +

[
192ik 4 + 8ik 8 − 80ik 6

]
sinh(σt)

}
t sin(kx)+

+

{[
8iσk 2 − iσk 4 − 16iσ

]
cosh(σt) +

[
8k 4 − 16k 2 − k 6

]
sinh(σt)

}
sin(3kx)+

+

{[
− 48ik 3 + 64ik + 8ik 5

]
cosh(2σt) +

[
32σk − 8σk 3

]
sinh(2σt)+

+
[
8ik 5 − 48ik 3 + 64ik

]}
sin(2kx)+

+

{[
− 16iσ + 16iσk 2

]
cosh(3σt) +

[
− 64iσ + 40iσk 2 − ik 4σ

]
cosh(σt)+

+
[
16k 4 − 48k 2

]
sinh(3σt) +

[
− 64k 2 − k 6 + 24k 4

]
sinh(σt)

}
sin(kx),

Den(x, t) = 4
[
4 kcosh2(σ t) − 4σ cosh(σ t) cos(k x) + k(4 − k 2) cos2(kx)

]
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The “missed modes”

Num2(x, t) =

{
256iσk − 192ik 3σ + 32ik 5σ

}
t cos(2kx)+

+

{[
2176ik 4 + 48ik 8 − 2048ik 2 − 608ik 6

]
cosh(σt) +

[
416σk 4 − 48σk 6 − 512σk 2

]
sinh(σt)

}
t cos(kx)−

− 64k
{[

6k 4 − 8k 2 − k 6
]

sinh(2σt) +
[
4iσk 2 − ik 4σ − 4iσ

]
cosh(2σt) +

[
− ik 4σ + 8iσk 2 − 8iσ

]}
t+

+

{[
− 2k 6 − 32k 2 + 16k 4

]
cosh(σt) +

[
− 2iσk 4 + 16iσk 2 − 32iσ

]
sinh(σt)

}
cos(3kx)+

+

{[
64σk − 16σk 3

]
cosh(2σt) +

[
− 96ik 3 + 128ik + 16ik 5

]
sinh(2σt) +

[
64σk − 16σk 3

]}
cos(2kx)+

+

{[
− 96k 2 + 32k 4

]
cosh(3σt) +

[
− 640k 2 + 112k 4 − 6k 6

]
cosh(σt)+

+
[
32iσk 2 − 32iσ

]
sinh(3σt) +

[
− 6iσk 4 + 80iσk 2 − 128iσ

]
sinh(σt)

}
cos(kx)−

− 64k
{[

2ik 2 − 2i
]

sinh(2σt) − 2σ cosh(2σt) − 2σ
}
,

Den(x, t) = 4
[
4 kcosh2(σ t) − 4σ cosh(σ t) cos(k x) + k(4 − k 2) cos2(kx)

]
.
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