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Abstract 

For one-dimensional compressible Euler’s equations instead of the well-known Riemann’s implicit 
solution an exact explicit analytical solution is obtained. To Riemann's shock wave arising time an explicit 
function on arbitrary initial conditions is also obtained. When the dissipation is taken into account, the 
possibility of solution retains smoothness for an unlimited time interval, is shown. An explicit form of 
solution gives possibility for deducing of the exact analytical representation also for anyone’s one-point 
and multi-points momentums and spectrums of all hydrodynamics fields important to the turbulence theory. 
For example, explicit exact analytical solutions are obtained for second -, third -, and fourth-order structural 
functions, as well as for the energy spectrum of a turbulent flow. It is shown that near the collapse of a 
solution that does not take into account dissipation, the ratio between single-point moments of different 
orders for the density gradient indicates the effect of strong intermittency of turbulence. 
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Introduction 

  Turbulence is an old and tantalizing subject when enormous amounts of data and ideas have been 
accumulated but still the problem is not solved [1]. The reason lies in the fact that the necessary exact 
solution [2-6] of the nonlinear hydrodynamics equations or field-theoretic tools [1] have appeared only in 
the last decades.  

 According to [7], the main problem of the theory of turbulence in a compressible medium is to obtain 
a closed description of any single-point or multi-point correlation (and cross - correlation) moments of 
density, pressure, and velocity field and the corresponding spectra. In this case, the specified hydrodynamic 
fields must be solutions of the corresponding Euler equations in the case of an ideal fluid or the Navier-
Stokes equations for a compressible medium in the case of viscous dissipation. 

In this paper, based on the approach developed in [4-6], we obtain an explicit analytical solution of the 
one-dimensional Euler equations for a compressible medium, which, like the Riemann solution, relates to 
the description of a nonlinear simple wave. In this case, the role of pressure is just accurately taken into 
account and its influence on the dynamics is decisive, in contrast to the theory of turbulence without 
pressure [1].   

  As a result, in this paper we obtain an exact explicit solution of the main problem of turbulence theory 
for a compressible medium in one-dimensional case. 
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1. Euler’s equations 
The one-dimensional Euler equation and continuity equation are represented in the form [8]: 
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For the polytropic gas, additionally to (1.1), (1.2), also the following relation is considered: 
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Assuming for the case of simple wave that  V  can be also represented as a function of  ρ  only,    

following relations are obtained in [8] (see (101.4) in [8]): 
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In the result, from (1.1), (1.2) and (1.4), the following modification of the one-dimensional 

hydrodynamic equations can be inferred [8, 9]: 
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From (1.5) and (1.7), in particular, after adding and subtracting one equation from another, the Riemann 
equation is represented in the next form, known also as the Hopf-Burgers (HB) equation: 
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2. Explicit solution of the Riemann problem 

Let us get from (1.5)-(1.9) an explicit form for the velocity field using approach developed in [2-6]. 
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Thus, representation (2.1) gives generalization of known solutions [2-6] to the case of one-dimension 
Euler equation with nonzero pressure gradient when 00 ≠c  in (2.3) and so in (2.3) is the explicit analytical 
form of the Riemann solution for the simple wave.    

For the distributed density, we also have the following exact solutions of the equations (1.6) [4-6]: 
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Consider, for example, dynamics of the density partial derivative over space variable: 
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From (2.3) for the one-point moment of second order in turbulence theory, we get close-form 
representation: 
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Actually, the solutions loose smoothness at some time instance  0tt = ,  depending on the initial velocity 

field distribution. Value  0t  is defined as the minimum time such that the following equality holds (see also 
[4-6]): 
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For example, from (3.1) for the initial velocity distributions )2/exp()( 2

0
2

0 xxaxV −=  and 
corresponding initial fields of density and local speed of sound (2.15) and (2.16) the minimal time of the 
shock wave arising is: 
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3. Solution regularization by dissipation 

It is known [10] that the presence of viscosity and thermal conductivity can lead to the dissipation of 
the wave energy. Here the increment  const=µ   characterizes the value of dissipative factors in the absence 
of dispersion (see (81.10) in [2]). In this case, for example, equation (1.9) has the form:  

µu
x
uu

t
u

−=
∂
∂

+
∂
∂  (3.1) 

 
In all other equations (1.5)-(1.8) it is also need to enter in the right hand side the same linear term for 

the corresponding field. 
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When such dissipative factors are taken into account above, the expression (2.4) has the following 
representation: 
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4. Turbulence theory 

In the theory of turbulence, one of the main characteristics of a turbulent flow is the structural function 
of the hydrodynamic field under study [7]. The Kolmogorov's law 4/5 gives for a third-order longitudinal 

structural function exact representation  rrS l ε
5
4)(3 −=  .  

 Based on the exact solution (2.1) and taking into account that  )(
2
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the structural function of the velocity field, which we define as:  
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In (4.1) ;..4;3;2=p  and introduced a characteristic integral length scale [5, 6]:  
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For example, it is possible to obtain  ( ) ∫∑
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Similarly, for the exponent value 3=p  in (5.1), we obtain the representation for a third-order structural 
function:   
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We now consider the energy spectrum and to determine it, we introduce a correlation function, which 

for the considered exact solution of the Euler equations (2.3) has the form: 
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The Fourier transform of the correlation function (4.5) allows us to obtain the following exact closed 

representation for the energy spectrum, expressed in terms of an arbitrary initial velocity field in the form: 
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As a result, in the limit 1>>kL  and 0tt →  for the energy spectrum (4.6) with an arbitrary initial 

velocity field, we obtain a universal dependence on the wave number in the form of the law-8/3: 
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The spectrum of density pulsations will have a similar power-law dependence on the wave 
number. In this regard, it is of interest to compare the turbulent spectrum (4.7) with the results of 
observations of turbulent spectra of electron density pulsations and correlated with it magnetic field 
pulsations in the magnetosheath [12], where an exponent close to the power-law dependence of the 
turbulent spectrum (4.7) on the wave number is obtained. Similar values of exponents close to -8/3 
(see Fig. 1 below taking from [12]) were obtained in the observation data of turbulent spectra for the 
Solar Wind and for the Earth's magnetosheath. 

The obtained correspondence of the spectrum (4.7) with the specified data may indicate an 
additional mechanism of the sink to the turbulent energy, which is not associated with ordinary 
dissipation, but is caused by the process of nonlinear overturning of a simple wave. At the same time, 
the effects of compressibility are significant, especially in the observations of turbulent spectra in the  
magnetosheath. Moreover, according to [12] , for the magnetosheath region of the gentle slope 1−∝ k  
of the spectrum (the region of energy pumping) with an increase in the wave number directly passes 
into the region with a steep slope 

3/8−k  (see Fig.1 below) really bypassing the intermediate regime 
with the Kolmogorov-Obukhov spectrum 3/5−∝ k .  
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Fig.1 

 

Magnetic field turbulence spectra for the solar-wind (SW) in blue (when 75=id km;                   

330=V


km s 1− ) and magnetosheath (MSH) in red (when 56=id km; 278=V


km s 1− ) interval.        

The solid vertical line represents 1=ikd  with the wave vector Vfk


/2π= , where f is the frequency [12] 

(see Fig.1 in [12]).          

 

Let's consider the single-point moments of hydrodynamic fields. Examples of a single-point moment 
for a density gradient without and with dissipation have already been given in (2.4) and (3.2). We obtain 
that the averaged single-point moment of the density gradient of any order  n  has the form: 
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In (4.8), for example, for a polytropic medium with an initial velocity field )2/exp()( 2
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used. Thus without taking into account the dissipation in (4.8) torque density gradient has a singularity
( )( )1

0/1/1 −−∝ n
n ttOG   in the limit  0tt →   where the minimum time of existence of smooth solutions 

given in (3.3) for considered initial velocity field. In this limit, there is a relation  
1)/1/(1/ 0

2
2 >>−∝ ttGG nn . That is typical for the regime of strong intermittency of turbulence [7, 8]. 

Indeed, the representation for the moment of the density gradient is obtained from (4.8) when nn 2→   
replaced in (4.8).  
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Conclusions 
Thus the exact closed-form explicit analytical solution to the Riemann problem for the Euler one-

dimensional hydrodynamics equations is obtained.  

The regularization by dissipation factors is determined for that solution for unlimited time, which gives 
unexpected positive resolution for the generalization of the Clay problem (www.claymath.org ) to the fluid 
and gas dynamics in the compressible case. 

On the base of explicit analytical form of the Riemann solution the explicit representation for the shock 
wave arising time is obtained for arbitrary initial conditions of the simple wave. 

Closed explicit analytical representations are obtained for one-point and two-point moments of 
hydrodynamic fields and for the energy spectrum, which gives an example of solving the turbulence 
problem based on the exact solution of one-dimensional Euler equations for a compressible medium. 

In this case, the turbulence spectrum power-law obtained from the exact solution of the Euler equation 
corresponds to the parameters of the turbulent spectra observed in the Earth's and Saturn's magnetospheres, 
as well as for the Solar Wind [12]. 

Based on this correspondence, we propose a mechanism for the sink of the turbulent energy, which 
was not considered earlier and which is caused by the collapse of nonlinear simple waves described by an 
explicit solution of the Euler equation. Understanding how collisionless plasmas dissipate remains a topic 
of central importance in space physics, astrophysics, and laboratory plasma. In recent years, it has become 
increasingly recognized that the MHD description must be refined to clearly make a connection with kinetic 
plasma dissipation [12]. The present results provide a step toward understanding this problem on the basis 
of the exact solution for compressible Euler’s equations. 

We thank Ya. G. Sinai and V. E. Fortov for attention and stimulating discussions on their Seminars on 
July and October 2019 in Moscow. 

The study is supported by the Russian Science Foundation, Grant number: 14-17-00806P and by the 
Israel Science Foundation, Grant number: 492/18  
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