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It is shown that the hydrodynamics equations for a thin 
spherical liquid layer are satisfied by the stream function of a 
pair of antipodal vortices (APV), in contrast to the stream 
function of a single point vortex on a sphere with a 
background of a uniform opposite sign vorticity. A simple 
zero solution of the equation of the absolute vorticity 
conservation is used for bypassing well-known nonlinear 
problem of a point vortices interaction with regular vorticity 
field and an exact solution for APVs dynamics problem on a 
rotating sphere is obtained. Due to this a new stable 
stationary solution for the dynamics of APV is obtained, 
which can model the dynamics of the global vortex 
structures such as atmospheric centers of action. 

12/7/2020 Page 2 

Abstract 

Совет по нелинейной динамике 



Layout 

1. Introduction 

2. Revision of the problem of elementary 
singular vortex object on a sphere 

3. APV dynamics on a rotating sphere 

4. Steady vortex modes (N=2) and their 
stability 

5. Polar vortex and stability observation data 

6. Conclusion 

12/7/2020 Page 3 Совет по нелинейной динамике 



1. Introduction 

The key large-scale vortex structures in the atmosphere are atmospheric 
centers of action (ACA). Regional and large-scale atmospheric anomalies and 
their changes are related to the ACAs regimes. For example, atmospheric 
conditions in the Northern Hemisphere over Europe are related to quasi-steady 
Icelandic cyclone (IC) and Azores anticyclone (AA) over North Atlantic.  

For modeling of dynamics of vortices like ACA dynamics the system of 
interacting antipodal point vortices (APV) is used [1]-[4]. Each APV is a 
combination of two point vortices located at diametrically conjugated points of 
the sphere and having equal magnitude, but opposite sign circulation.  

   Up to now absolute stationary solutions to the dynamics equations of APVs 
on a rotating sphere, which could simulate the stationary or quasi-stationary 
states like for the centers of action in the atmosphere are not known [5]-[7].  

In this paper, a solution is obtained for the dynamics of APV on a rotating 
sphere, for which there is a stable stationary mode that simulates exactly the 
absolute stationary ACA-like structure corresponding to the condition       . 
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2. Revision of the problem of elementary 
singular vortex object on a sphere 

In the spherical coordinate system          , rigidly connected to the globe 
and with the origin in the center of the globe the hydrodynamics equations 
with zero radial component of velocity        for the stationary and 
azimuthally symmetrical case are represented in the most simple form, 
when                  ;               : 

 

      (1) 

 

In (1)              is the density,              is the constant speed of rotation of 
the globe or sphere, and  p is the pressure. 

A unit point vortex on a sphere together with compensating uniform 
regular vorticity field is considered by, e.g. Bogomolov [3], Kimura and 
Okamoto [8]; Dritschel and Boatto [9]-[11] gives stream function: 
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      (2) 
Stream function (2) does not meet (1) when rotation is absent for      
(see also [12]), whereas the stream function of APV satisfies them in 
this case. Stream function of APV has representation:  
    .                                          (3)  
In the case when rotation of a sphere with angular velocity      is taken 
into account in (1), one needs to replace ,                   and, accordingly, 
use the stream functions (2) and (3) with an additional term                 . 
      (4) 
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3. APV dynamics on a rotating sphere 

The dynamic interaction of APVs is considered based on an exact weak solution of 
the absolute vorticity conservation equation on a rotating sphere which for the case 
of constant thin of spherical layer is [6], [13]:  

                                                                                  (5) 

where ;                   is the angular velocity of the sphere rotation (for the Earth,                    
 ),     is the co-latitude;       is the longitude;         

                                                                  is the radial component of the local    

 

vortex field on the sphere, i   s the Beltrami- Laplace operator; is the stream 
function. According to (5), each Lagrangian particle preserves the value of absolute 
vorticity in a thin layer of liquid on a rotating sphere. Therefore, as in [14]-[16], we 
use the absolute vortex field in the form of APVs system: 

                                  (6) 

 

As a result, we obtain an exact solution of equation (6) for the stream function in 
the form: 

                                                                              (7) 
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Note that in the case of        the stream function (7) exactly coincides with the 
stream function (4) for a single APV located at the poles of the sphere. 
A weak solution to (5) is obtained by substituting in (5) the vortex field (6) 
and corresponding steam function (7). As a result, the functions           are 
defined as the solutions to the following 2N-dimensional Hamiltonian system 
of ordinary differential equations [14]-[16]:  
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The system (8) for  with accuracy up to a multiplier (set to π) coincides with 
the corresponding system derived in [4] for N pairs of APVs. 
The system (8) for          with accuracy up to a multiplier (set to π) coincides 
with the corresponding system derived in [4] for N pairs of APVs. 
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4. Steady vortex modes (N=2) and their 
stability 

Let us consider steady modes corresponding to the equilibrium for      
APVs in (8).  

                                                                                          (9) 

An additional condition for the absence of absolute motion uses the 
equality                , and has the form: 

                                  .                             (10)                 

From (9), it follows that              . It means that we consider a steady 
mode for two APVs having opposite circulation directions and placed on 
the same meridian. Also, from (9), it follows that             and, thus, APV 
with         has less intensity than APV with        , if, by definition, we 
assume          in (9) and (10). Moreover from (10) we can determine that 
APV with the coordinate 𝜽𝟐𝟎 and intensity 𝚪𝟐 is indeed anticyclone because 
an anticyclone having the direction of rotation opposite to the direction of 
the rotation of the sphere. 
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Indeed, for the ACA over the North Atlantic, the Meridian coordinates of the 
Icelandic cyclone and the Azores anticyclone are close each to other. This 
corresponds to the case                 under which the conditions (9) and (10) 
are obtained. According to (9), ACA over North Atlantic have opposite signs 
and different values of the vortex circulation. As in (9), in reality, the 
intensity of the Icelandic cyclone usually exceeds the intensity of the Azores 
anticyclone. 
Consider now stability of the steady mode (9), (10), modeling steady regime 
of a cyclonic-anti-cyclonic ACA pair. We use for this the system (8) for the 
case N=2.  
 Let us introduce a disturbance of the steady mode (9), (10) as  
                                                                           (11) 
Then, the system of equations for the disturbances (11) is as follows 
                                     
 
        (12) 
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The system (12) describes non-linear evolution of the disturbances. 
Despite the obtained stability of the dynamics of the perturbed vortex system, 
the relative magnitude of change of the vortices location during their 
oscillations near the stationary state substantially depends on the form of the 
initial perturbations and their amplitude (see Fig.1). 
 

NP 

IC 

AZ 

Fig. 1. Plots of periodic trajectories of Icelandic (IC, about equilibrium             shown by a small solid 
ellipse) and Azores (AZ, about equilibrium              shown by a small solid ellipse) vortices according to 
(12) and its linearization for various initial conditions (shown by crosses) in the Northern hemisphere. 
Simulation time is less than a period. a) x(0)=50, z(0)=y(0)=0; solutions of linearized of the (12), dash, 
mainly inner lines, and solutions of non-linear equations (12), dash-dot, mainly outer lines; b) z(0)=50, 
x(0)=y(0)=0, solutions of linear equations are outer lines, and solutions of (12) are inner lines The North 
Pole (NP) is the point of the meridians (radial lines with stride 150) intersection (not visible). Concentric 
lines represent latitudes with stride 3.750. 
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Thus, significant weather and climatic anomalies can be associated only 
with initial displacements of the Icelandic cyclone in the south direction 
(see Fig.1a). 
  According to a long-term observations (see Appendix C in [15]) the 
cyclonic-anticyclonic vortex pair of the ACAs over North Atlantic, usually 
only slightly deviates from the equilibrium annual-mean coordinates 
that corresponds to the case illustrated by Fig. 1b. However, for some 
years, significant deviations are observed as shown in Fig. 1a. The 
mechanism for the formation of such dynamics with significant 
difference in behavior, as manifested for atmospheric centers of action 
in Fig. 1a and Fig. 1b, requires clarification. 



5. Polar vortex and stability observation 
data 

Let us consider the case when a cyclonic anti-cyclonic pair of APV interacts 
with an APV located on the poles with the stream-function   

                         to be added in the right-hand side of (7) [15], [16]. 
Then, it is necessary only make the following substitutions in (8): 

                                                                                 (13) 

Taking into account (13), instead of equilibrium conditions (9) and (10), 
the new conditions obtained for the realization of the stationary state of 
the cyclonic anti-cyclonic pair of APV on the rotating sphere with a polar 
APV having non-zero circulation      : 

                        ,                                (14) 

                       .           (15) 

 

Stability conditions for the stationary state (14), (15) in the limit of 
extremely small disturbances are as follows [15], [16]: 
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                  (16) 
 
 
In particular, for the equilibrium coordinates of the vortex pair of APV   
, the condition (16) yields the following inequality:  
                                                                                                     (17) 
Then the intensity of the polar vortex corresponding to the stationary state 
(14), (15) is         . For   , it corresponds to 
the cyclonic circulation orientation of the polar vortex. Vice versa, anti-
cyclonic circulation of the polar vortex corresponding to observations [15] 
satisfies     following from (14).  
   If the condition (16) is violated, i.e. when for        , the stationary state 
(14), (15) is exponentially unstable and the following relationships hold:  
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estimating the character time of the disturbance growth               if 
accepting that anti-cyclonic APV intensity is                       ,            . 
  It means that in the period of about one month even in the case of small 
disturbances with amplitude about 10 the deviation from the equilibrium up 
to 50 is possible with manifestation of a dynamic mode like in Fig. 1a.  
  Results of comparison of the stability condition (16) with observations [15] 
are presented below. An analysis was conducted in [15] for the variability in 
the mean distance between ACAs by longitude, Δλ for the Atlantic (Icelandic 
Low and Azores High) and Pacific (Aleutian Low and Hawaiian High) ACAs as 
abnormality characteristics of the position and instability of the vortex pairs. 
In particular, reanalysis data were used for the detection of ACA 
characteristics similar to [17]. The abnormality (instability) of mutual ACA 
positioning during the particular season was characterized in [15] by 
deviation from the long-term mean against the standard deviation. Also the 
degree of abnormality (instability) in the temperature difference between 
land and ocean ΔТ in the Northern Hemisphere was estimated with respect 
to the mean conditions from CRU data for winters 
(http://www.uea.ac.uk/cru/data ). The obtained estimates show the 
comparability of the dynamic and thermal factors in the formation of stability 
modes or instability of the ACA mutual positioning on the sphere. 
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Fig. 2 and Fig. 3 show stability regions depending on the positions of 
anticyclonic and cyclonic vortices according to condition (16). The horizontal 
axis on Figs. 2 and Fig. 3 corresponds to the co-latitude θ for the anticyclonic 
ACA vortex center, and the vertical axis for that of the cyclonic ACA. Crosses 
on figures characterize mean values of θ for the respective vortices of the 
ACA pair (by the cross position) and their standard deviations (by the cross 
size in the respective direction). Dark region shows stability obtained 
according to the condition (16). The stationary mode of the vortex pair on 
Fig. 2 (similar to Icelandic-Azores ACA pair in 1988) falls in the stability 
region, and on Fig. 3 (similar to Icelandic-Azores ACA pair in 1964) does not 
fall into it. Shadowed regions on Figs. 2 and 3 correspond to the conditions 
of realization of exactly anti-cyclonic circulation of the polar vortex in the 
Northern Hemisphere when the right hand side of (14) and (15) is positive. 
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 Fig. 2 Stability regions for                 with co-latitudinal 
position of vortex pair at                       in the stability area.  
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Fig. 3. Stability regions for     with co-latitudinal position of 
vortex pair at                  in the instability area. 
 
On the whole, the comparison of the theoretical results with long-
term observational data [15] indicates their general agreement. 
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6. Conclusion 

It is shown that only APV meets the hydrodynamic equations on a sphere. 
The stream functions used in [3], [8]-[11] do not meet the hydrodynamic 
equations (1), so it cannot be realized in fluid dynamics. Thus, APV is the 
only correct elementary vortex object on a sphere. 

An exact solution for the APVs dynamics on the rotating sphere is obtained 
by using stream function of solid-state rotation, corresponding to zero 
absolute vorticity. On this base a steady solution for two APVs is obtained 
which gives a possible hydrodynamic mechanism for long-living stable 
cyclonic-anticyclonic vortex pairs like IC and AA and their dynamics. The 
possible sensitivity of IC and AA centers of atmospheric action over North 
Atlantic to the different type of initial disturbances is also explained on the 
base of linear and nonlinear stability analysis of the steady solution 
obtained.  

The authors thank Anthony R. Lupo for helpful comments. 
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