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According to the basic concepts of General Relativity, fotons in a curved spacetime move
along null geodesics = = z*(\) satisfying the equation
d?x dx® dxP

It =0
d\? T as d\ dA ’

where \ is an affine parameter. This equation determines all geodesic characteristics, includ-
ing the deflection angle when passing near a gravitating mass.
For static asymptotically flat spacetimes the deflection angle is given by

Ao =2 0((ry ).

where G is the gravitational constant, M is the total gravitating mass, b is the impact param-
eter, ry = 2G M. . For the ray passing in the vicinity of the solar limb Ay =~ 1.75".
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Deflection of light in time-dependent metrics

By the localized source of gravitational waves:

e T. Damour and G. Esposito-Farése, PRD (1998);
® S. M. Kopeikin, G. Schafer, C. R. Gwinn, and T. M. Eubanks, PRD (1999).

The effect of gravitational waves appears only in high orders of expansion in 1/b.

An analytical study of light propagation in the gravitational field of an ensemble of arbitrarily
moving and spinning point-like masses using retarded Liénard-Wiechert potentials:

e S. M. Kopeikin and G. Schafer, PRD(1999);
e S. Kopeikin and B. Mashhoon, PRD (2002).

Effect of cosmological expansion on light ray deflection (using McVittie metric):
e O. k. Piattella, Universe (2016)

No effect of cosmological background on the deflection angle in the leading order.
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Deflection of light by localized scalar field configurations

e K. S. Virbhadra, D. Narasimha, and S. M. Chitre, A&A (1998).

The effect of the static spherically symmetric distribution of a massless scalar field studied on
the basis of the Janis-Newman-Winicour solution.

e M. P. Dabrowski and F. E. Schunck, ApJ (2000).
e F. E. Schunck, B. Fuchs, and E. W. Mielke, MNRAS (2006).

The gravitational lensing by a static spherically symmetric halo constructed from the nonlinear
complex scalar field without and with a ¢6—type self-interaction.

e M. BoSkovi¢, F. Duque, M. C. Ferreira, F. S. Miguel,and V. Cardoso, PRD (2018).

A numerical study of motion of test particles in time-dependent gravitational fields of oscillating
configurations of a non-self-interacting scalar field:
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Deflection of light in nonstatic spherically symmetric grav itational fields

Consider a spherically symmetric nonstatic metric of the form

ds® = B(t,r)dt* — A(t,r) dr?* — r*(d¥® + sin* ¥ dp?).

For light rays lying in the plane ¢} = 77/2, the geodesic equation reduces to
d [ pdt Bdt A [(dr\°[dt\ "
— 1N R — P I
d d 2B d\ 2B \ dA d\ ’

?r B[ dt 2+éﬂ@+A/ dr\* r (do 2_0
d2 24 \dx) " Adrdx T 24\dx)  A\dr) 7

d?p  2dr dyp B

DE v
where (-) = 9/0t, (") = d/0r. For a ray coming from infinity with impact parameter b
do b dt\ dr\* b2
= Bl—)] —A|— ] — = =0.
o 2 <d>\> (dA) 2 =Y
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In the weak field approximation

A=1-20+003), B=1+2x+ 033,

where (¢, ) and x/(t, r) are time-periodic functions of order s < 1, and s ~ G.
Trajectory without gravitating mass (straight line):

r=x0+tyg—1t, y=2>,

= /x2(t) + b2, t=\
With gravitating mass (deflected trajectory):

r(t) = (14 n(t)) V/x2(t) + b2, B%-l—l—(() (m~C~xkl),
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From the geodesic equations we obtain

c . b

% —X(t,T)+¢(t,T) (1_ 7“_2)7
w@”+#ﬁ%—Kﬁ—W%n+f%@w%+@”—ﬁhﬁﬁf+ﬁdﬂ=0-

d b

Integration of these equations gives

(= ][ [ (t,7) 4+ (L, ) (1—-22)] dx,

{/ 2t r) + (2% — b%)x(t,7) + b7C(1)] i—:;j + const} ,
p =1+ Ay,

X
12 + b

77:

where the deflection angle is

< 9 _9
A¢_b/ X=6=2 .

P
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The obtained formula for the deflection angle,

9y — (=9
Agp:b/ X=6=21 ..

2 + b

— 0

is valid not only for time-periodic metrics, but also for static ones. In this case ( = 0.
Consider, for example, the Schwarzschild metric. Assuming 7,/b = 2 < 1, where
rq = 2G M is the gravitational radius, we have

b
Y =X = —%
bx Va2 + b? T
n=—x—3 e ( o + arsh 7 + const> :
Integration gives the well-known result
4G M
Ap = —— +0((ry/5)*).

In the case of a time-periodic metric, the deflection angle will generally depend on the
photon emission time ¢ or, which is the same, on the observation time tp = tg + 2.
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Deflection of light by a time-periodic spherically symmetri c scalar field

As a deflecting mass, we consider a pulsating dark matter halo made from the self-gravitating
real scalar field with the potential

U(9)

RN

e quantum field theory [G. Rosen (1969), Bialynicki-Birula & Mycielski (1975)]

e inflationary cosmology [Linde (1982, 1992), Albrecht & Steinhardt (1982), Barrow & Parsons
(1995)]

e supersymmetric extensions of the Standard Model (flat direction potentials in the gravity
mediated supersymmetric breaking scenario) [Engvist & McDonald (1998)]
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Einstein-Klein-Gordon system

Ry, — %ng/ = 3rG [¢,u¢,u — (%gb,o&b’a — U(¢)) guﬂ/] )

10 96\  dU(¢)
V= <F"@>+ 6

The case of spherical symmetry: ds?> = Bdt? — Adr? — r2(d¥? + sin? ¥ dp?):

A’I" A_ 1 L [ ]. 2 ]. 2 2 2 2 ]
Z + ., = 47TGT'A -E¢t -+ Z¢T +m ¢ 1 —1In ? _ ,
f — . p— 47TGTA _E¢t -+ Z¢T — m ¢ 1 — ln ? _ y

2 1 (A, B A, B, e
_(/btt__ <¢rr _¢r>‘|’ZB (1‘5 — t>¢t (A — B>¢r:m2¢ln§

Boundary conditions

&(t,00) = 0, A(t,00) =1, B(t,00) = 1, é(t,0) = 0, A(t,0) = 1.
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This system has a pulsating solution of the form

B(t, ) = ala(8) + #Q(8, p) + O(32)]e=)/2,

A(t,r):< ppg)l, B(t,r):( —%g) e *,

ﬁ erf,o epz
2p

where

pg(T,p) = —3p [Vmax (1 - ) i “2p2] *=7 +0(2),

$(7,9) = #(2Vimax + a® lna? + a2p?)~" + O(:2),

T = mt, p = mr, »x = 4nGo? < 1 (G is the gravitational constant). The function
a(6(7)) oscillates in the range —amax < @a(0) < amax in the local minimum of the potential

Via):
agg = —dV/da,  V(a)=(a’/2) (1 —Ina®) < Vinax = V(Gmax);

where 6, = 1 + € + O(5¢%), and the constant () is the pulson frequency correction
due to gravitational effects. The function Q(H, ,0) is a series in Hermite polynomials whose
coefficients are periodic (in 8) solutions of nonhomogeneous Hill equations.
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Since the metric found is everywhere regular and has no horizon, we can rewrite the
functions A(t, r) and B(t, r) with the required accuracy in the form

A=1-2%+00G3), B=1+2y+002),

w(tar):glvmax (1_\/7€rf >+ap] o p27

where

2p
f >
x(tr) =—= [Vmax( y Yo, ) +a’lna ] 30"
2 2p
Calculating 9)(t, ), x(t,7) and setting
T = TrR—& —§ {=mx, Tp=mir, & =mro— 00
B = mb, p° =&+ 5, d/dr = —d/d¢,

we find

¢ = Z ¢35 /:O [jf (a®Ina®) — & _ﬁa _52d§,
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On the other hand,

d2 2 d2 2 d2 2
dfaQ = dTGQ = d:Q 02 = AVax — 20° + 4a*Ina® + O(x).

Using these relations and integrating by parts, we finally obtain

" d? d
C:—Ze3 (;déﬂ ff)a2+0(%2).

Now we substitute v, ¥ and ( into the formula for 17 and integrate over £. This gives

{erf§ 82 erfp erf 0
p? ( / “ 2p )]

2
_%e—ﬁ (a +Q%%)+60nst§}+0( ?).

no= 56362{\/?‘/%(
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Now we rewrite the general expression for the deflection angle as

7 2x —(—2n

Be=r| “eip

dg

and substitute there

: 2 [C erf
o2y — ( —2n = e3P {ﬁVmaX% [eﬁ / = dé — erfﬁ]
P o P

1d?a? 2 1 1\ da? 2 3
—— 4+ 2|1 -t t—= 5.
3 dez +4< ﬂﬂ) gt e p2}

It is remarkable that the last three terms in this formula, two of which contain derivatives of the
oscillating function a2, do not contribute to the integral in Ap.
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As a result, after integrating, we arrive at a simple formula

. e3ﬁVmaX _ 32 9
Ap = x 5 (1—6 )—I—O(%)

— ZLGTM (1 — e_meQ) + 0 (%2) :

where b is the impact parameter, M is the halo mass,
M = (ey/7)” 02m™ WVinax (1 + O(x)).

It is interesting that the deflection angle is time-independent in the leading order, despite
the scalar field oscillations. This is a specific feature of the logarithmic potential. The maximum
value of Ay is achieved at mb = 1.1209.

A A\

1.12 B
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