
Статистические характеристики ансамбля солитонов внутренних волн

Талипова Т.Г., Диденкулова Е.Г., Пелиновский Е.Н.

Институт прикладной физики РАН, Нижний Новгород

Смещение изотерм в поле внутренних волн на шельфе Австралии

~ 13 солитоноподобных волн в цуге

Модель эволюции длинных внутренних волн умеренной амплитуды Уравнение Гарднера

$$\frac{\partial u}{\partial t} + \alpha u \frac{\partial u}{\partial x} + \alpha_1 u^2 \frac{\partial u}{\partial x} + \beta \frac{\partial^3 u}{\partial x^3} = 0$$

•Интегрируемая модель

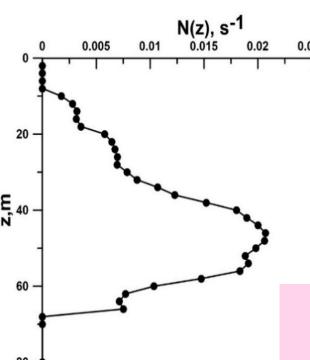
Коэффициенты модели являются функционалами стратификации

Модель эволюции внутренних волн

Уравнение Гарднера для горизонтально — однородного океана можно записать в системе отсчета, бегущей с линейной скоростью волны, c, введя время $\tau = x/c - t$:

$$\frac{\partial \eta}{\partial x} + \left(\frac{\alpha}{c^2} \eta + \frac{\alpha_1}{c^2} \eta^2\right) \frac{\partial \eta}{\partial \tau} + \frac{\beta}{c^4} \frac{\partial^3 \eta}{\partial \tau^3} = 0$$

где η есть вертикальное смещение пикноклина в максимуме модовой функции $\Phi(z)$, определяемой из граничной задачи


$$\frac{d^2\Phi}{dz^2} + \frac{N^2(z)}{c^2}\Phi = 0 \qquad \Phi(0) = \Phi(H) = 0 \qquad \Phi_{\text{max}} = \Phi(z_{\text{max}}) = 1$$

$$N^{2}(z) = -\frac{g}{\rho(z)} \frac{d\rho(z)}{dz}$$

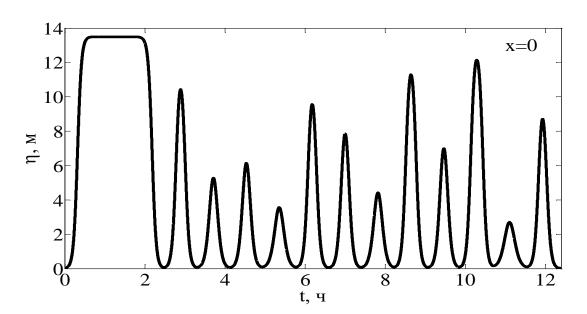
Параметры модели

Горизонтально – однородный океан, глубина 80 м. Стратификация соответствует измеренной на шельфе Австралии

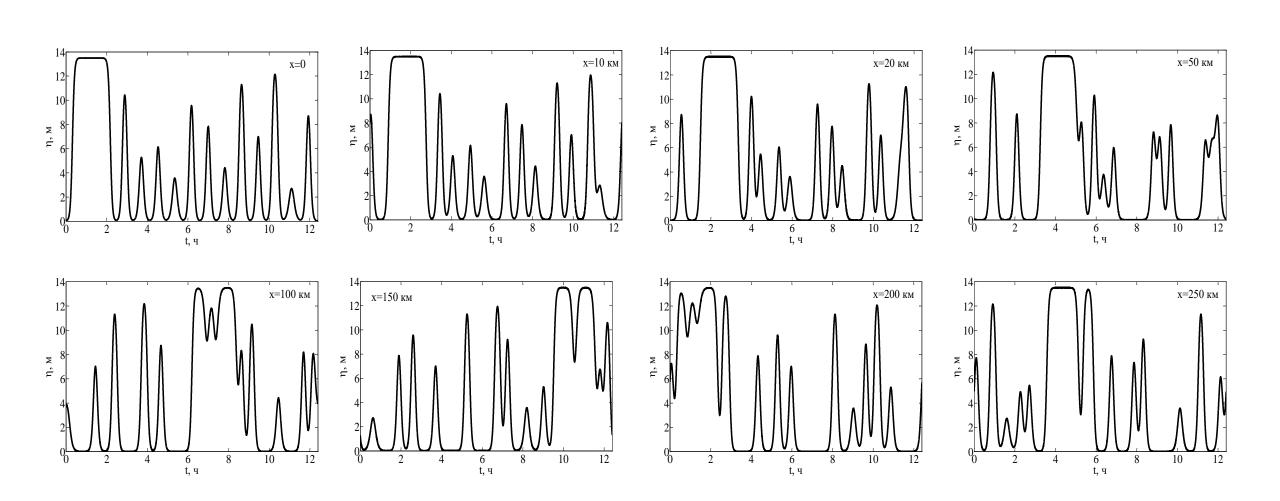
Коэффициенты уравнения Гарднера

$$a_{\lim} = -\alpha/\alpha_1 = 13.5 \text{ M}.$$

$$c = 0.32 \text{ m/c}, \ \beta = 71.5 \text{ m}^3\text{c}^{-1}, \ \alpha = 0.00965 \text{ c}^{-1}; \ \alpha_1 = -0.000715 \text{ m}^{-1}\text{c}^{-1}.$$

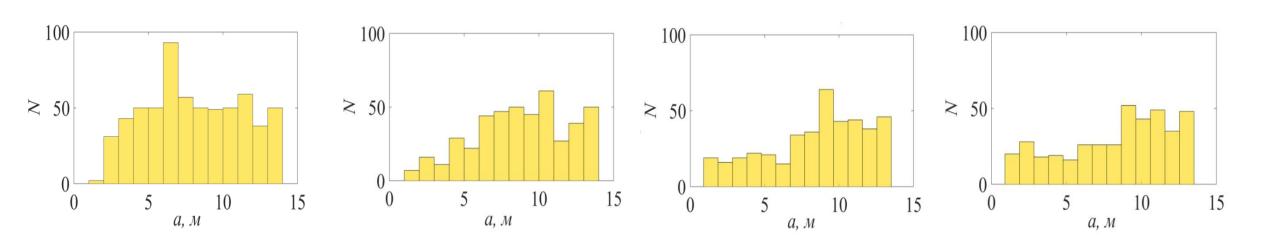

Для решения модельной задачи берутся периодические граничные условия на временном интервале длительностью 12.4 часа, что соответствует полусуточному приливу

В качестве «начальных» (x = 0) условий для уравнения (4) принимаются ансамбли солитонов вида


$$\eta_{0}(t) = \sum_{i=1}^{13} \frac{a_{i} \left(2 - \frac{a_{i}}{a_{\lim}}\right)}{1 + \left(1 - \frac{a_{i}}{a_{\lim}}\right) \cosh(\gamma_{i}V_{i}t + \varphi_{i})} \qquad \gamma_{i} = \sqrt{\frac{\alpha a_{i}}{6\beta} \left(2 - \frac{a_{i}}{a_{\lim}}\right)} \qquad V_{i} = \frac{\alpha a}{6} \left(2 - \frac{a_{i}}{a_{\lim}}\right)$$

Параметры модели

Для набора статистически достоверных результатов солитоны в ансамбле задавались с амплитудами, равномерно распределенными от 2.7 м до 13.5 м (амплитуда предельного солитона). Всего для моделирования было подготовлено 50 таких ансамблей, каждый из которых служил начальным условием модели. Динамика каждого ансамбля численно исследовалась на трассе длиной около 250 км.



Эволюция поля солитоноподобных внутренних волн на разных расстояниях

Статистические характеристики ансамбля

Гистограммы амплитуд пиков

При x = 10 км, когда солитоны ещё несильно «перемешались», распределение амплитуд достаточно близко к равномерному за исключением самых малых амплитуд, до 3 м, которые первыми взаимодействуют с солитонами больших амплитуд. Поэтому доля импульсов с амплитудами в районе 6 - 7 м значительно возросла, здесь присутствует пик с $N \sim 90$. В дальнейшем число волн с малыми амплитудами постепенно уменьшается, а с большими — увеличивается. Однако стоит отметить, что общее число импульсов падает с распространением, поэтому число импульсов в гистограмме, для x = 250 км меньше, чем в гистограмме, для x = 250 км меньше x = 250 км мен

Моменты поля

Среднее значение поля:

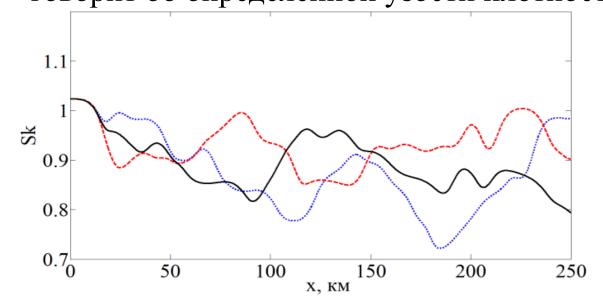
$$<\eta(x)> = \frac{1}{T}\int_0^T \eta(\tau)d\tau$$
, ë

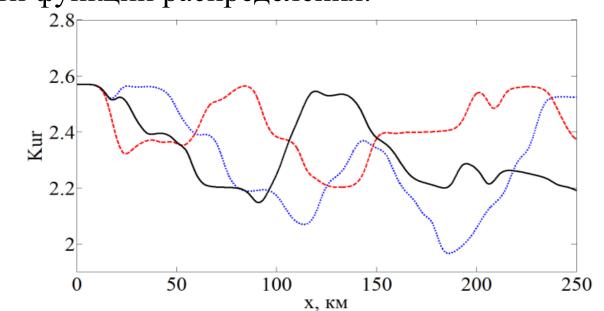
Дисперсия поля

$$\sigma^{2}(x) = \frac{1}{T} \int_{0}^{T} [\eta(x,\tau)^{2} d\tau - \langle \eta(x,\tau) \rangle^{2}] d\tau,$$

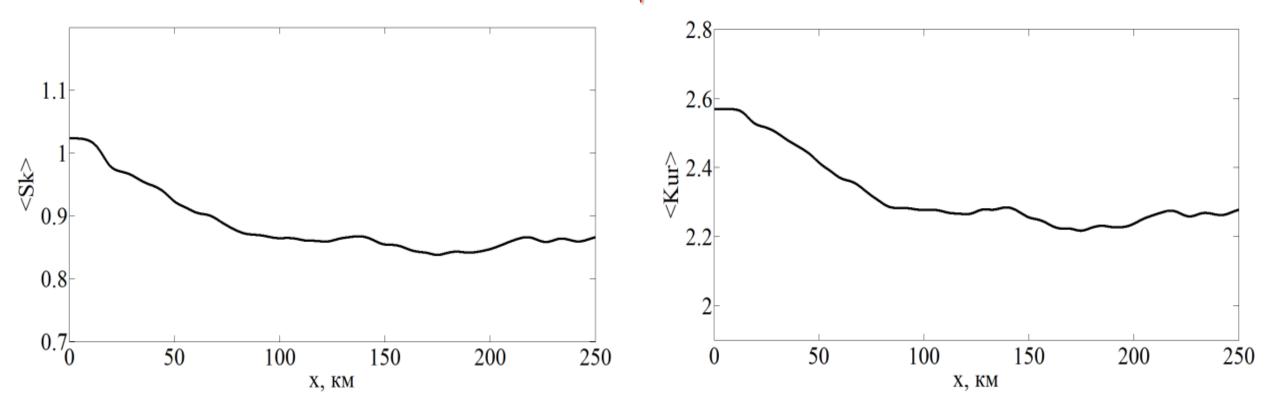
Асимметрия

$$Sk(x) = \frac{1}{T\sigma^3} \int_0^T [\eta(x,\tau) - < \eta(x,\tau) >]^3 d\tau$$


Эксцесс


$$Kur(x) = \frac{1}{T\sigma^4} \int_0^T [\eta(x,\tau) - < \eta(x,\tau) >]^4 d\tau.$$

Асимметрия и эксцесс


В начальной точке они одинаковы во всех реализациях и вычисляются аналитически: асимметрия - Sk = 1.024 и эксцесс - Kur = 2.57.

Поле солитонов не является гауссовым (для гауссова распределения Sk = 0 и Kur = 3), коэффициент асимметрии положительный, так что вклад в асимметрию дают больше горбы, чем впадины. Коэффициент эксцесса меньше трех (гауссово значение), что говорит об определенной узости плотности функции распределения.

Статистические оценки асимметрии и эксцесса

При усреднении есть общая тенденция к уменьшению усредненных по 50 реализациям высших моментов примерно на 20 % на расстоянии до 130 км. Далее они остаются фактически постоянными примерно на расстоянии в 100 км и могут рассматриваться как средние значения для ансамбля солитонов внутренних волн (солитонного газа).

Заключение

- В процессе эволюции солитоны в цуге объединяются в импульсы сложной формы, в результате чего количество импульсов может заметно сокращаться при распространении
- Отмечено уменьшение усредненных моментов (асимметрия и эксцесс) до 20% по мере распространения
- Гистограммы амплитуд импульсов демонстрируют близкое к равномерному распределение амплитуд на малых расстояниях и значительное преобладание доли больших волн над маленькими с ростом расстояния, пройденного ансамблем.