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Introduction

@ Hasselmann Equation (HE))

o) Owy O
(-; + akk ai - 5n/ + Sin + Sdiss

o c=¢(F k. t)

@ S, - nonlinear 4-waves interaction term

@ S, - wind input

@ Suiss - wave-breaking dissipation

@ Basis of operational models WaveWatch, WAM

@ Study of physically based HE models is of urgent importance
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@ HE historical study focused on 2 sub-cases:

@ Homogeneous case % =S, + Si, + Sgiss

@ Stationary case %g—? =S, + Si, + Sdiss

@ Both cases obey self-similar solutions (SSS) in the assumption
Sin ~ werl

@ We formulate the model and present the first study of full
physical statement of HE, partially based on SSS properties

5/34



Introduction

Self-similar solutions:
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Problem statement

@ Deep water case w = (gk)

% + ;“j{" cosHag = Sni + Sin + Sdiss
1/2

e Exact Sy,
e ZRP forcing S;, ~ wt!, s = 4/3 (Zakharov, Resio, Pushkarev

2010)

Dissipation spectral tail ~ w;5 starting from fyss = 1.1 Hz
Channel of 40 km width: La-Manche (English Strait)

40 points in real space, 5° angular resolution, 72 frequencies
Wind 10 m/sec blowing from France to UK

7/34



Problem statement
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Problem statement
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Dissipative boundaries case
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Dissipative boundaries case
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Dissipative boundaries case

Total energy of the fetch as the function of time:
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@ thick solid line — total

@ dotted line — in the wind direction

@ dash-dotted line — normal to the wind
@ dashed line — against the wind

@ dash-triple-dotted line — not along the wind 125



Dissipative boundaries case

Node = 2 Node = 14

Energy spectra for 2 hours
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Dissipative boundaries case
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Dissipative boundaries case

Nade =26 Node=28

Energy spectra for 40 hours
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Dissipative boundaries case
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Dissipative boundaries case

Sector from -80 to 80 degrees
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Dissipative boundaries case
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Dissipative boundaries case

Sector from -80to 80 degrees
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50% reflection boundaries case

Total energy of the fetch as the function of time:
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@ thick solid line — total
@ dotted line — in the wind direction
@ dash-dotted line — normal to the wind
@ dashed line — against the wind
@ dash-triple-dotted line — not along the wind 20/34



50% reflection boundaries case

Total energy of the fetch as the function of time — zoomed:
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@ thick solid line — total

@ dotted line — in the wind direction

@ dash-dotted line — normal to the wind

@ dashed line — against the wind

@ dash-triple-dotted line — not along the wind 21 /34



50% reflection boundaries case

200km 010, Fetch = 14.00km
Tme= 21h

Fetch= 26.00 km
Time= 21h

Energy spectra for 2 hours
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50% reflection boundaries case

Energy spectra for 2 hours

23/34



50% reflection boundaries case

Fetch= 2600km 20 Fetch = 38.00 km
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Energy spectra for 265 hours
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50% reflection boundaries case

Fetch= 14.0km Maximum= 150

Energy spectra for 265 hours
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50% reflection boundaries case
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Experimental evidence
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CONOCO PHILLIPS Ecofisk platform

A. Simanesew et al., 2017
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Experimental evidence
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Experimental evidence

ATM Flight Tracks (ATMgomx98-981105)
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Experimental evidence

Lon:37.75, Lat:22.00

Red Sea spectra (Langodan et al., 2014)
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Experimental evidence

Relieve map of Lake Michigan [m]
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Lake Michigan spectra (Dee et al., 2011)
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Experimental evidence

K13 - mean spectrum [m2/Hz/rad]

The spectrum measured at K-13 plathform, Dutch North Sea,
(Cavaleri et al., 2018)
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Conclusions

Nonlinear Ocean Waves Amplifier

NOWA
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Conclusions

@ Turbulence splits into different regimes in space and time:
o Initial threshold-like unimodal dual SSS regime
e Mix of self-similar wind sea and monochromatic waves
@ Quazi-monochromatic waves tilt from 90° to 105° to the wind
© Both cases evolve to asymptotic stationary state
@ NOWA regime could be Bose-condensation
© Qualitative similarity of cases - asymptotic stationarity, NOWA
effect, dual SSS threshold-like propagation

About 3x amplification of NOWA effect in 50% reflective case
Billiard effect in 50% reflections case with time period defined by

spectral peak speed propagation

Better isotropization of the spectrum in reflective case
Multiple experimental confirmations

Apparent ubiquity of NOWA effect: it is caused by
inhomogeneity in straits and limited fetch situations due to
shores as well as open sea due to wind change

00 00
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