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Wave turbulence theory (Kolmogorov-Zakharov’s spectrum)

Wave turbulence occurs when nonlinear waves interact with each other. This phenomenon is ubiquitous:

oceanographic waves, plasma waves in the solar wind, nonlinear optical waves, elastic waves, or gravitational

waves. A weakly nonlinear theory (or weak turbulence theory) predicts analytically the wave spectra in var-

ious domains involving nonlinear waves. Such Kolmogorov-Zakharov’s (KZ) spectra can be also obtained by

dimensional analysis, [Nazarenko et al. (2003)].

The Zakharov-Filonenko spectrum (1967) for isotropic capillary wave turbulence is the example of KZ-

spectrum:

S(k) =< |ηk|2 >= C(σ/ρ)−3/4P1/2k−(19/4)
,

where C is a constant, σ is the surface tension coefficient, ρ is the mass density of a liquid, P is the energy

dissipation rate.
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Magnetic (electric) free surface wave turbulence

A new type of magnetohydrodynamic turbulence developing in an external magnetic (electric) field at the

free surface of a liquid was discovered in the works [Boyer,Falcon, (2008), Dorbolo, Falcon (2011)]. There was

no theoretical explanation for this phenomenon. In our works [Kochurin, E.A. JETP Lett. (2019), Kochurin,

E.A. J. Magn. Magn. Mater. (2020)], for the first time, the new type of magnetohydrodynamic turbulence was

numerically simulated in the case of plane-symmetric geometry. A new type of turbulence spectrum is observed

both numerically and experimentally.

[1] F. Boyer, E. Falcon. Phys. Rev. Lett. (2008).
[2] S. Dorbolo, E. Falcon. Phys. Rev. 2011
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Dimensional derivation of Kolmogorov-Zakharov’s spectra

Consider a wave system with the linear dispersion law

ω(k) = λkα, (1)

where ω is the frequency, k is the wave vector, and k = |k| is its absolute value. The important feature of the

wave system is the number of waves N involved in resonant interaction. The number N is defined as a minimal

integer for which the N-wave resonant conditions are satisfied:

ω(k1)± ω(k2) . . .± ω(kN ) = 0, k1 ± k2 . . .± kN = 0. (2)

Write now the formula for the turbulence spectrum in terms of the energy density for a N-wave system:

Ek = CP1/(N−1)
λ
X kY

, (3)

where Ek is the spectral energy density in absolute k, C is the Kolmogorov-Zakharov’s constant. The indexes

X and Y are defined as,

X =
2N − 5

N − 1
, Y = (2α + d − 6) +

5− 3α− d

N − 1
,

where d is the dimension in the physical space of the energy density Ek (Ek has dimension L6−dT−2, [S(k)] =

L5−d , and [P] = L5−dT−3). Let us introduce the dimension of Fourier space D. In the case of anisotropic

geometry, d and D are not equal to each other. The spectral energy density is related with the wave action n(k)

as follows,
∫
Ekdk =

∫
ωkn(k)dk = ΩD

∫
ωkn(k)kD−1dk, where ΩD is the solid angle in Fourier space.
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Kolmogorov-Zakharov’s spectra for capillary wave turbulence

In the case of isotropic two-dimensional capillary wave turbulence d = D = 2, N = 3, the relation (3) yield

the classic example of Zakharov-Filonenko spectrum (1968):

n(k) = C 3w
2D P1/2(σ/ρ)−1/4k−17/4

.

Ek = 2πC 3w
2D P1/2(σ/ρ)1/4k−7/4

. (4)

For the capillary waves, the energy density Ek is related with the surface elevation spectrum as follows Ek =

(σ/ρ)ΩDk
2|ηk|2kD−1, where ηk is the Fourier image of the function η(x, y) determining the shape of a free

surface. Thus, from the expression (4) one can obtain the spectra S(k) = |ηk|2 and S(ω) = |ηω|2 for the

surface elevation in k and ω domains, respectively:

S(k) = C 3w
2D P1/2(σ/ρ)−3/4k−19/4

, (5)

S(ω) = 4π/3C 3w
2D P1/2(σ/ρ)1/6

ω
−17/6

. (6)

The spectrum (6) is obtained from the relation S(k)dk = S(ω)dω, which has a sense of the conservation law of

energy in k and ω coordinates. The spectra (5) and (6) are well known and confirmed both experimentally and

numerically [N Pushkarev and V E Zakharov. Phys. Rev. Lett (1996), M Yu Brazhnikov, G V Kolmakov, A A

Levchenko, L P Mezhov-Deglin. JETP Lett., (2001), E Falcon, C Laroche, S Fauve. Phys. Rev. Lett., (2007)].

What happens when an external magnetic field is applied?
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Dimensional derivation of the Phillips spectrum

Note that for gravity waves of large amplitude, the Phillips spectrum (1958) can be realized

[S(k)] = L4
, → S(k) = f (θ)k−4

, (7)

[S(ω)] = L2T , → S(ω) = αg2
ω
−5
, (8)

with α is the non-dimensional Phillips constant. The Phillips spectrum (15) is sufficiently different from the

weakly turbulent KZ spectra: it does not explicitly depend on the energy dissipation flux P. The independence of

the Phillips spectrum from the input energy is caused by the wave breaking processes in nonlinear wave systems

[Kuznetsov, JETP Lett. (2004)]. The Phillips spectrum can be realized for nondispersive quasi-shock wave

turbulence of gravity waves in shallow waters.

The derivation of the Phillips spectrum can be easily generalized for capillary waves with the dispersion law,

ω = (σ/ρ)1/2k3/2.

[S(k)] = L4
, → S(k) = g(θ)k−4

, (9)

[S(ω)] = L2T , → S(ω) = αc
2

3

(
σ

ρ

)2/3

ω
−7/3

. (10)

with αc is the non-dimensional capillary Phillips constant. The capillary Phillips spectrum is predicted in the

work [Newell, Zakharov, Phys. Lett. A (2008)]

Thus, there are two possible types of spectra for the wave turbulence on water surface: weakly nonlinear KZ

spectra, and strongly nonlinear Phillips spectrum (9)-(10) .
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What spectrum do we expect to observe in simulation of the free surface MHD wave

turbulence?

he dispersion relation for linear waves at the boundary of a ferrofluid subjected to an external horizontal

magnetic field B has the form [Melcher (1961)]:

ω
2(k) = gk +

γ(µ)

ρ
B2k2

x +
σ

ρ
k3
, (11)

where ω is the frequency, g is the gravitational acceleration, γ(µ) = (µ − 1)2/(µ0[µ + 1]) is the auxiliary

coefficient, µ0 and µ are the magnetic permeabilities of vacuum and liquid, respectively. For high magnetic

fields, surface waves propagates along the x-axis without dispersion (like acoustic waves) with Alfèn speed,

V 2
A = γB2/ρ.

Assuming that effects of capillarity and gravity are negligible (wave propagation is non-dispersive), and the

isotropic character of fluid motion, one can obtain the MHD turbulence spectra:

S(k) = CKZ
B P1/2V

−3/2
A k−4

, (12)

S(ω) = 2πCKZ
B P1/2V

1/2
A ω

−3
, (13)

where CKZ
B is the Kolmogorov-Zakharov constant for the free surface MHD wave turbulence.

Surprisingly, that for the pure non-dispersive case in 2D geometry, the KZ-spectrum coincides with the Phillips

spectrum

[S(k)] = L4
, → S(k) = αBk

−4
, (14)

[S(ω)] = L2T , → S(ω) = αBV
2
Aω
−3
. (15)

if αB = (P/V 3
A)1/2. The energy dissipation flux P has the same dimension as V 3

A .
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Model equations

The computational model used in the work is based on the quadratically nonlinear equation system ini-

tialy formulated in the framework of Hamiltonian formalism for the description of electrohydrodynamic motion

of dielectric liquids in [Zubarev (2004), Zubarev (2009), Zubarev and Kochurin (2013)]. Melcher has shown

that ferrofluid MHD motion is mathematically completely equivalent to the dynamics of non-conducting liquids

subjected to an external electric field, i.e., the model can be directly used for studying the current problem.

The Hamiltonian of the system under study in dimensionless units (ρ = 1, σ = 1) reads

H =
1

2

∫∫ [
(∇⊥η)2 + ψk̂ψ − η

(
(k̂ψ)2 − (∇⊥ψ)2

)
+V 2

A

(
ηx k̂
−1
ηx + Aµ

[
ηη

2
x − ηx k̂

−1
ηk̂ηx

+ηx k̂
−1(∇⊥η · ∇⊥k̂−1

ηx )
])]

dxdy , (16)

where∇⊥ = {∂x , ∂y} is the nabla operator, k̂ is the integral operator having the form: k̂fk = kfk , in the Fourier

representation, k̂−1 is the inverse k̂-operator, and Aµ = (µ− 1)/(µ + 1) is the magnetic Atwood number.

The equations of the boundary motion are obtained by taking the variational derivatives:

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −

δH

δη
. (17)

The equations (17) of the boundary motion are applicable for any symmetry of the surface perturbations. In

the quasi-1D geometry they can be simplified.
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Model equations

Finally, taking the variational derivatives from (16) and adding to the equations (17) terms

responsible for the effects of pumping and dissipation of energy, one get the governing equation

system:

ηt = k̂ψ − k̂(ηk̂ψ)−∇⊥(η∇⊥ψ) + D̂kη, (18)

ψt = ∇2
⊥η +

1

2

[
(k̂ψ)2 − (∇⊥ψ)2

]
+ V 2

A k̂
−1ηxx

−
AµV 2

A

2

[
2k̂−1∂x

(
ηk̂ηx −∇⊥η · ∇⊥k̂−1ηx

)
− η2

x

−2ηηxx − (∇⊥k̂−1ηx )2
]

+ F(k, t) + D̂kψ, (19)

where D̂k is the viscosity operator acting as, D̂k fk = −ν(k − kd )2fk , for k ≥ kd , and, D̂k = 0,

for k < kd , the coefficient ν determines the intensity of energy dissipation. The pumping term

F(k, t) in (19) is defined in Fourier space as: F(k, t) = F (k) exp[i(ω(k) + R)t], where F (k) =

F0 exp[−(k − k0)4/kf ], with F0 is the forcing amplitude reached at k = k0, and R are the random

numbers normally distributed at the interval [0, 2π]. The wave vectors are pumped at the range:

1 ≤ k ≤ kf . Thus, we use resonant forcing with isotropic set of wavenumbers but anisotropic

distribution of frequencies.
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Simulation results

We present four series of calculations with the different values of an external magnetic field: V 2
A = 0, 25,

100, and 300, respectively. Figure 1 shows the temporal evolution of the total energy of the system defined from

(16).
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Figure 1: The free surface shape is shown at the time instant, t = 250, of a quasi-stationary state for the

different values of a magnetic field: (a)-(d) correspond to V 2
A = 0, 25, 100, and 300, respectively..
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Simulation results: Free surface at stationary states

Figure 2 shows the free surface of a magnetic fluid at a given moment of a quasi-stationary state for the

different magnetic fields. One can observe a transition from isotropic to highly anisotropic character of the fluid

motion. In the case of maximal magnetic field, the surface relief becomes almost unidirectional; the surface

waves propagate along the y -axis, i.e., in the direction perpendicular to the external magnetic field
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Figure 2: The free surface shape is shown at the time instant, t = 250, of a quasi-stationary state for the

different values of a magnetic field: (a)-(d) correspond to V 2
A = 0, 25, 100, and 300.
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Simulation results: Free surface gradient at stationary states

Figure 3 shows the free surface gradient at the same moments as in Fig. 2. Figure 3 clearly shows the

tendency to formation of spatially narrow regions with sharp jumps in the surface gradient along y -axis. The

time-averaged steepness was equal to 0.17, 0.18, 0.14, 0.17; and averaged absolute curvature (the second spatial

derivative of η) was 1.43, 2.35, 2.94, and 3.95 for the corresponding values of VA.
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Figure 3: The free surface gradient is shown at the time instant, t = 250, of a quasi-stationary state for the

different values of a magnetic field: (a)-(d) correspond to V 2
A = 0, 25, 100, and 300, respectively.
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Dispersion relation: waves traveling parallel to B direction

Figure 4 shows the space-time surface spectrum for the waves traveling along the direction of an external field,

i.e., with ky = 0. Energy is found to be localized in the Fourier space around the linear dispersion relation (11).
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Figure 4: Space-time Fourier transform of the surface shape, log |η(ω, kx , 0)|. The red dashed lines correspond

to the dispersion relation (11) and white dashed lines to non-dispersive wave propagation, ω = VAkx ; (a)-(d)

correspond to V 2
A = 0, 25, 100, and 300, respectively
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Dispersion relation: waves traveling perpendicular to B direction

The space-time spectrum for the waves traveling along the y -axis is shown in Figure 5.In Figure 5, we see an

evidence of a coherent structure in the form of a second additional branch of the dispersion curve. This branch

is nothing else than bound waves propagating over the main carrier wave.
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Spatial spectrum of the surface elevation

Figure 6 shows cross-sections of the surface elevation spectrum S(k) along the x-axis (blue lines) and y -axis

(green lines) for the different magnetic fields.
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Figure 6: The cross-sections of the time-averaged spatial spectrum, S(k), in ky = 0 (blue lines) and in kx = 0

(green lines). Insets: surface spectra averaged over phase angle and multiplied by k.
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Frequency spectrum of the surface elevation: the capillary Phillips spectrum

Figure 9 shows the frequency spectra S(ω) at zero and high magnetic fields. In the absence of a field, the

simulation results again show good agreement with the KZ spectrum: S(ω) ∼ ω−17/6. However, at the strong

field, the frequency spectrum does not coincide with the spectrum (13) for non-dispersive waves.
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Figure 7: Frequency spectra of the surface elevation S(ω).
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Compression of the resonance curve

The three-wave resonance conditions

k = k1 + k2, ω = ω1 + ω2.

To check the conditions for the realization of exact resonances, we used the third-order correlator (bicoherence)

B(k1, k2) =
|〈η∗k1

ηk2
ηk1+k2

〉|√
〈|ηk1

|2〉〈|ηk2
ηk1+k2

|2〉
, k2 = {0, 50} (20)

Figure 8: Bicoherence is shown for the zero field (left) and for VA2=150 (right).
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Calculation of the spectrum coefficients

The sectrumhe coefficients Ck and Cω are measured in the quasi-stationary state

S(k) = Ckk
−4
, S(ω) = Cωω

−7/3
.

The simulation results show that

Ck ∼ (P/V 3
A)1/2

, Cω ∼ (P/V 3
A)1/2

The quantity αB = (P/V 3
A)1/2 is non-dimensional!
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