
The linear instability near the Akhmediev
breather – the regular approach.

P. G. Grinevich1, P.M. Santini2

1Steklov Mathematical Institute, Moscow, Russia
L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia,

Lomonosov Moscow State University, Russia.
The author was supported by RSF grants No 18-11-00316 and No 21-11-00331

2Dipartimento di Fisica, Università di Roma ”La Sapienza”, Italy
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Anomalous waves for the Focusing NLS

We study the anomalous waves on the focusing NLS equation (SfNLS)
with periodic boundary conditions:

iut + uxx + 2u2ū = 0

We use the following Cauchy data (anomalous waves Cauchy problem):

u(x, 0) = a + εv(x), v(x + L) ≡ v(x), |ε | � 1,

v(x) =
∑
j≥1

(
cje ikjx + c−je−ikjx

)
, kj =

2π
L

j, |cj | = O(1),

To simplify calculations we also assume that the period L is generic:
L , πn, n ∈ Z.
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Linear perturbation theory near the background

Consider the unstable background: (ε = 0):

u0(x, t) = ae2i|a |2t .

A harmonic perturbation

u(x, 0) = a + εe ikx

is unstable if |k | < 2|a | and stable if |k | ≥ 2|a |.
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Linear stability of the background

We study periodic problem, therefore only L -periodic perturbations
are considered:

k = kj =
2π
L

j, j ∈ Z.

The first N harmonics are unstable, where

N =

[
|a |L
π

]
with the growing factor in the linear mode:

σj = |a |kj

√
4|a |2 − k 2

j , 1 ≤ j ≤ N,

All other modes are stable. They give only small corrections and we
discard them.
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Zero-curvature representation

Integrability of self-focusing NLS equation (SfNLS)

iut + uxx + 2u2ū = 0, u = u(x, t)

is based on the zero-curvature representation (Zakharov-Shabat):

~Ψx(λ, x, t) = U(λ, x, t)~Ψ(λ, x, t), ~Ψt (λ, x, t) = V(λ, x, t)~Ψ(λ, x, t),

U =

 −iλ iu(x, t)

iu(x, t) iλ

 ,
V(λ, x, t) =

 −2iλ2 + iu(x, t)u(x, t) 2iλu(x, t) − ux(x, t)

2iλu(x, t) + ux(x, t) 2iλ2 − iu(x, t)u(x, t)

 ,
where

~Ψ(λ, x, t) =

[
Ψ1(λ, x, t)
Ψ2(λ, x, t)

]
.
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One unstable mode

Let us discuss the first non-trivial case N = 1: π/|a | < L < 2π/|a |.

u(x, 0) = a
(
1 + ε

(
c1ek1x + c−1e−ik1x

))
, k1 =

2π
L
, ε � 1,

where c1 and c−1 are arbitrary O(1) complex parameters.

Problem: Calculate the time of the first rogue wave appearance and its
position. Calculate the periodicity of appearances in terms of the Cauchy
data.
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Akhmediev breathers

The unstable mode is described by Riemann theta functions of 2
variables.

But for this special Cauchy data it admits a good approximation as a
sequence of Akhmediev breathers (Grinevich–Santini).

Akhmediev breathers:

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first order
solutions of the Nonlinear Schdinger equation”, Theor. Math. Phys, 72,
809 (1987).

A(x, t ; θ,X ,T) =

= a e2i|a |2t
·

cosh[σ(θ)(t − T) + 2iθ] + sin θ cos[k(θ)(x − X)]

cosh[σ(θ)(t − T)] − sin θ cos[k(θ)(x − X)]
,

k1 = k(θ) = 2|a | cos θ, σ(θ) = k(θ)
√

4|a |2 − k 2(θ) = 2|a |2 sin(2θ),
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Akhmediev breathers

They are spatially periodic and localized in time:

The x coordinate axis marked red, the t coordinate axis marked green. In
the future we draw only one period of solution with respect to x.
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One unstable mode

Generic solution for one unstable mode is well-approximated by a
sequence of Akhmediev breathers:

Recurrence of Akhmediev breathers for one unstable mode (L = 6).
Here we draw exactly one period in the x-variable.
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One unstable mode
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Recurrence of Akhmediev breathers for one unstable mode (L = 6).

Essential parameters:
First appearance time T (0), position of maximum at first appearance X (0),
interval between subsequent appearances ∆T , phase shift between
subsequent appearances ∆X .
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One unstable mode

Approximation of the genus 2 solution:

u(x, t) =
n∑

m=0

A

(
x, t ; φ1, x(m), t(m)

)
e iρ(m)

−
1 − e4inφ1

1 − e4iφ1
ae2i|a |2t , x ∈ [0, L ],

where:

x(m) = X (1) + (m − 1)∆X , t(m) = T (1) + (m − 1)∆T ,

X (1) =
arg α

k1
+

L
4
, ∆X =

arg(αβ)

k1
, ( mod L),

T (1) =
1
σ1

log

 σ2
1

2|a |4ε|α|

 , ∆T =
1
σ1

log

 σ4
1

4|a |8ε2|αβ|

 ,
ρ(m) = 2φ1 + (m − 1)4φ1, n =

⌈
T − T (1)

∆T
+

1
2

⌉
,

cos φ1 =
π

L |a |
, k1 =

2π
L

= 2|a | cos(φ1), σ1 = k1

√
4|a |2 − k 2

1 = 2|a |2 sin(2φ1),

α = e−iφ1 c1 − e iφ1 c−1, β = e iφ1 c−1 − e−iφ1 c1.
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One unstable mode

The spectra curve has genus g = 2 and 6 branch points: E0, E1, E2, Ē0,
Ē1, Ē2. The pair E1, E2 is obtained as a results of splitting the resonant
point λ1 = i|a | sin φ1:

El = λ1 + (−1)l ε|a |
2

2λ1

√
αβ + O(ε2), l = 1, 2,
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Figure: Right: the exact spectrum; Left: the approximating curve.
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Two special symmetric configurations:

−λ
1

E  =
0 i|a|

E  =
0

λ
1

E
1

E
2

E
2

E
1

−i|a|

−λ
1

λ
1

E  =
0 i|a|

E  =
0

E
2

E
1

E
2 E

1

−i|a|

Figure: Left: vertical gap. Right: horisontal gap.
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Two special symmetric configurations:

Remark: In these two special cases theta-functions of genus 2 can be
reduced to genus 1.

1 Elliptic solutions:

Akhmediev N.N., Eleonskii V.M, Kulagin N.E., “Exact first-order
solutions of the nonlinear Schrödinger equation”, Theoret. and
Math. Phys., 72:2 (1987), 809–818;

2 Reduction for generic parameters:

Smirnov A.O., “Periodic two-phase “Rogue waves””, Mathematical
Notes, 94 (2013), 897–907;

3 Reduction in terms of σ-functions:

Ayano T., Buchstaber V.M., “Relationships between hyperelliptic
functions of genus 2 and elliptic functions”, arXiv:2106.06764.
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Effect of small loss/gain

As we mentioned above, in real physics it is necessary to take into
account small corrections to the NLS equation.
The effect of Hamiltonian perturbations vanishes in the leading order. In
contrast, effect of non-Hamiltonian perturbations is non-trivial in the
leading order.

Effect of small loss/gain

iut + uxx + 2u2ū = −iνu, u = u(x, t), ν ∈ R, |ν| � 1.

was recently analytically studied in:

Coppini F., Grinevich P.G., Santini P.M. “The effect of a small loss or gain
in the periodic NLS anomalous wave dynamics. I,” Phys. Rev. E, 101:3
(2020), 032204, 8 pages, - Published 6 March 2020;
doi:10.1103/PhysRevE.101.032204.
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Small loss/gain – experiments and numerics

Our aim was to explain the results of experimental and numerical
observations:

O. Kimmoun, H.C. Hsu, H. Branger, M.S. Li, Y.Y. Chen, C. Kharif, M.
Onorato, E.J.R. Kelleher, B. Kibler, N. Akhmediev, A. Chabchoub,
“Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam
Recurrence”, Scientific Reports, 6, Article number: 28516 (2016),
doi:10.1038/srep28516.

J.M. Soto-Crespo, N. Devine, and N. Akhmediev, “Adiabatic
transformation of continuous waves into trains of pulses”, PHYSICAL
REVIEW A, 96, 023825 (2017).

P. G. Grinevich, P.M. Santini The linear instability near the Akhmediev breather



Small loss/gain – experiments and numerics

Figure: Measured AB envelope along the large wave facility. The picture
was presented in the paper by O. Kimmoun at al, doi:10.1038/srep28516.
The phase shift between subsequent appearances of anomalous waves
is equal to the semi-period of the wave.
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Analytic formulas.

We have the following approximate formulas the spectral curve is not
time–invariant, but it changes each time we have an anomalous wave:

(E1 − E2)2

∣∣∣∣∣∣
t=0

= −
ε2|a |2αβ

sin2 φ1
,

(E(m)
1 − E(m)

2 )2 = −
ε2|a |2αβ

sin2 φ1
+ 4mν cot φ1, m ≥ 0,

where E(m)
1 ,E(m)

2 are the branch points after the mth-th breather.
Therefore:

∆Xm := x̃(m+1) − x̃(m) =
arg(Qm)

k1
( mod L),

∆Tm := t̃(m+1) − t̃(m) = 1
σ1

log
(

σ4
1

4ε2 |Qm |

)
,

ε2Qm = ε2αβ −
νσ1

|a |4
m, m ≥ 1, (1)
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Evolution of the branch points

Figure: Evolution of the branch points
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Symmetric initial data numerics vs analytics:

0

100

3−3

t

x

t̃(1) = 5.51209 (theory) t̃(1) = 5.51208 (numerics)
∆T1 = 11.18230 (theory) ∆T1 = 11.18230 (numerics)
∆T2 = 11.40337 (theory) ∆T2 = 11.40338 (numerics);
∆T3 = 11.77375 (theory) ∆T3 = 11.77376 (numerics);
∆T4 = 13.31847 (theory) ∆T4 = 13.31848 (numerics);
∆T5 = 11.84989 (theory) ∆T5 = 11.84988 (numerics);
∆T6 = 11.44140 (theory) ∆T6 = 11.44142 (numerics);
∆T7 = 11.20765 (theory) ∆T7 = 11.20766 (numerics);
∆T8 = 11.04319 (theory) ∆T8 = 11.04320 (numerics)

The density plot of |u(x, t)| with −L/2 ≤ x ≤ L/2, 0 ≤ t ≤ 100, L = 6,
ε = 10−4, c1 = 0.3 + 0.4i, c−1 = c1, ν = 10−9. After 5 recurrences Qm

changes its sign, from positive to negative values; correspondingly, ∆Xm

switches from 0 to L/2.
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Stability of Akhmediev breathers

Our analytic formulas as well as numerical simulations provide the strong
evidence that:

1 The process of Akhmediev breather generation is very stable;

2 In contrast, the Fermi-Pasta-Ulam-Tsingou recurrence is very
sensitive to small perturbation. For example, small perturbations
of solutions generate recurrence. Moreover, the solutions
demonstrate the highest unstability when they reach the maximal
value.

At the next slide we illustrate this conclusion by a numeric example.
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Stability of Akhmediev breathers – numerical test
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Figure: The figures are enumerated from left to right. We use the
recurrence times to measure the effect of perturbation. Smaller
recurrence times mean stronger instability. At Figures 2-4 we apply the
same perturbation δu(x.0) = 10−4[(0.1 − 0.5i)e ik1x + (0.1 + 0.1i)e−ik1x ].

1 Fig.1: Exact Akhmediev breather;
2 Fig.2: Perturbation of the background;
3 Fig.3: Perturbation of Akhmediev breather applied 2.7 seconds

before the peak;
4 Fig.4: Perturbation of Akhmediev breather applied at the peak time.
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When we started to present these results, we got criticism that our results
contradict to the linear stability of N-Akhmediev breather.

There is the following common believe in the literature. Let the NLS
background be unstable with respect to the first N modes. Then

1 If M < N unstable modes are exited, then the corresponding
M-breather solution is linearly unstable;

2 If all N unstable modes are exited, then the corresponding
N-breather solution is neutrally stable, due to “saturation of
instabilities”.
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Linear perturbation theory near Akhmediev breather

Let us recall the arguments. To study the linear perturbation theory the
squared eigenfunctions expansion of the linearized equation is used.

A. Calini, C.M. Schober, “Dynamical criteria for rogue waves in nonlinear
Schrödinger models”, Nonlinearity, 25:12 (2012) R99–R116;
doi:10.1088/0951-7715/25/12/R99.
A. Calini, C.M. Schober, “Observable and reproducible rogue waves”, J.
Opt. 15 (2013) 105201 (9pp).
A. Calini, C.M. Schober, “Numerical investigation of stability of
breather-type solutions of the nonlinear Schrödinger equation”, Nat.
Hazards Earth Syst. Sci., 14, 14311440, 2014 www.nat-hazards-earth-
syst-sci.net/14/1431/2014/doi:10.5194/nhess-14-1431-2014.

Let us recall the main formulas.
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Linear perturbation theory near Akhmediev breather

To simplify formulas we use the following gauge transformation.

u(x, t)→ exp(2it)u(x, t), ~ψ→ exp(iσ3t)~ψ,

The new function u(x, t) satisfy:

iut + uxx + 2|u|2u − 2u = 0.

Assume for a moment that δu and δū are independent functions.
Important fact: Squared eigenfunctions

δu = ψ1(λ, x, t)ϕ1(λ, x, t), δū = ψ2(λ, x, t)ϕ2(λ, x, t)

satisfy the complexified linearized NLS equation:{
i δu + δuxx + 4uū δu − 2δu + 2u2 δū = 0,
−i δū + δūxx + 4uū δū − 2δū + 2ū2 δu = 0.

(Complexified means exactly that δu and δū are treated as independent
functions.)
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Linear perturbation theory near Akhmediev breather

To construct solutions of “normal”, not complexified linearized NLS, it is
sufficient to consider “real”linear combination:〈

~ψ(λ, x, t), ~ϕ(λ, x, t)
〉

+
:= ψ1(λ, x, t)ϕ1(λ, x, t) + ψ2(λ, x, t)ϕ2(λ, x, t),〈

~ψ(λ, x, t), ~ϕ(λ, x, t)
〉
−

:= i
[
ψ1(λ, x, t)ϕ1(λ, x, t) − ψ2(λ, x, t)ϕ2(λ, x, t)

]
Of course, we have to select spatially-perioic solutions with the period L .

In the aforementioned papers it was shown that if we have N unstable
modes and nonlinear superpositions of M Akhmediev breathers, M ≤ N
then

1 If not all unstable modes are exited (M < N) then there exist
x-periodic squared eigenfunctions exponentially growing in t ;

2 If all unstable modes are exited (M = N) then all x-periodic squared
eigenfunctions are bounded in t ;

Therefore the conclusion about linear stability was made.

But we see the intability
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Linear perturbation theory near Akhmediev breather

We obtained the following resolution of the paradox (we studied the case
M = N = 1):
Due to presence of non-removable double points the spectral
decomposition of linerized NLS solutions includes not only x-periodic
squared eigenfunctions, but also some special combinations of
derivatives with respect to the spectral parameter.

The fact that it is necessary to use derivatives with respect to the spectral
parameter can be extracted from the paper
I.M. Krichever, Spectral theory of two-dimensional periodic operators and
its applications, Russ. Math. Surv., 44(2), 145225 (1989)
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The “missed modes”

The resonant point is:

λ1 =
√
µ2

1 − 1, µ1 =
k1

2
=
π

L
,

k = k1 = 2µ1, σ = σ1 = −4iλ1µ1, θ(λ1) =
1
2

(ikx − σt) .

Denote

~q(λ) =

[
q1(λ)
q2(λ)

]
=

[√
µ − λ eθ(λ) +

√
µ + λ e−θ(λ)

√
µ + λ eθ(λ) −

√
µ − λ e−θ(λ)

]
,

~r(λ) =

[
r1(λ)
r2(λ)

]
=

[ √
µ − λ eθ(λ) −

√
µ + λ e−θ(λ)

√
µ + λ eθ(λ) +

√
µ − λ e−θ(λ)

]
,

~φ(λ) =

[
φ1(λ)
φ2(λ)

]
=

[
1

(µ + λ)

]
eθ(λ)

~q = ~q(λ1), ~r = ~r(λ1),

The Darboux transformation operator is defined by:

D(λ) = (λ − λ1)E +
2λ1

|q1|
2 + |q2|

2

[
−q2

q1

]
[−q2, q1],
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The “missed modes”

Operator D maps the background eigenfunctions to the eigenfunctions
for the Akhmediev breather.

~ψ(λ) = D(λ)~ψ0(λ)

Let us consider the following set of dressed eigenfunctions:

~χ+(λ) = D(λ)~q(λ), ~χ−(λ) = D(λ)~r(λ), φ̃(λ) = D(λ)φ(λ),

Denote:

Dµ = ∂µ +
∂λ

∂µ
∂λ = ∂µ +

µ

λ
∂λ.

We have

(Dµ + Dµ̄)
〈
χ+(λ), χ−(λ)

〉
±

∣∣∣
λ=λ1

=
〈
χ

(1)
+ , χ

(0)
−

〉
±
,

(Dµ + Dµ̄)2 〈
χ+(λ), χ−(λ)

〉
±

∣∣∣
λ=λ1

=
〈
χ

(2)
+ , χ

(0)
−

〉
±

+ 2
〈
χ

(1)
+ , χ

(1)
−

〉
±
,

(Dµ + Dµ̄)
〈
φ̃(λ), φ̃(λ)

〉
±

∣∣∣∣
λ=λ1

= 2
〈
φ̃(1), φ̃(0)

〉
±
.
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The “missed modes”

Theorem The following combinations of the derivatives of the squared
eigenfunctions with respect to the spectral parameter:

Sym1 = 2l20

[
m0

(〈
χ

(2)
+ , χ

(0)
−

〉
+

+ 2
〈
χ

(1)
+ , χ

(1)
−

〉
+

)
− 4

〈
χ

(1)
+ , χ

(0)
−

〉
+
− 16

〈
φ

(1)
+ , φ

(0)
−

〉
+

]
,

Sym2 = 2l20

( 〈
χ

(2)
+ , χ

(0)
−

〉
−

+ 2
〈
χ

(1)
+ , χ

(1)
−

〉
−
−

2m0

l20

〈
χ

(1)
+ , χ

(0)
−

〉
−

)
,

where λ1 = il0, µ1 = m0.

They are x-periodic with period L ;

They exponentially grow as t → ±∞;

They are solutions of the linearized NLS near the Akhmediev
breather.

Therefore they represent the “missed modes”.
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The “missed modes”

Let us shift the solution and the eqgenfunction x → x − L/4. Denote by
Ŝym1 the odd part of Sym1.

Ŝym1(x, t) = k
N̂um1(x, t)
D(x, t)

N̂um1(x, t) =

[[
48σk 4 − 8σk 6

]
cosh(σt) +

[
192ik 4 + 8ik 8 − 80ik 6

]
sinh(σt)

]
t sin(kx)+

+

[[
− 16iσ + 16iσk 2

]
cosh(3σt) +

[
− 64iσ + 40iσk 2 − ik 4σ

]
cosh(σt)+

+
[
16k 4 − 48k 2

]
sinh(3σt) +

[
− 64k 2 − k 6 + 24k 4

]
sinh(σt)

]
sin(kx)+

+

[[
− 48ik 3 + 64ik + 8ik 5

]
cosh(2σt) +

[
32σk − 8σk 3

]
sinh(2σt)+

+
[
8ik 5 − 48ik 3 + 64ik

]]
sin(2kx)+

+

[[
8iσk 2 − iσk 4 − 16iσ

]
cosh(σt) +

[
8k 4 − 16k 2 − k 6

]
sinh(σt)

]
sin(3kx),

D(x, t) = 4
[
4 kcosh2(σ t) − 4σ cosh(σ t) cos(k x) + k(4 − k 2) cos2(kx)

]
.
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Sketch of the proof of completeness

The method was developed in the papers:

For eigenfunctions expansion:
Krichever, I.M., “The spectral theory of “finite-gap” non-stationary
Schrödinger operators. The non-stationary Peierls model”, Functional
Anal. Appl. 20 (1986), 203–214.

For eigenfunctions and squared eigenfunctions expansions:
Krichever, I.M., “Spectral theory of two-dimensional periodic operators
and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225.

(The main example was the Kadomtsev-Petviashvili equation.)

For decaying at infinity boundary conditions the completeness of squared
eigenfunctions for focusing NLS was proved in:

Kaup, D.J., “Closure of the Squared Zakharov-Shabat Eigenstates”,
Journal of Mathematical Analysis and Applications, 54 (1976), 849–864.
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Sketch of the proof of completeness

How to prove the convergence of the standard Fourier series?

Let us recall how it is done in the calculus textbooks.
Let u(x) = u(x + 2π) be a 2π periodic sufficiently regular function.
The partial Fourier series:

un(x) =
n∑

k=−n

ûje ikx

can be written as:

un(x) =

2π∫
0

Kn(x−y)u(y)dy, Kn(x) =
1
2π

n∑
k=−n

e ikx =
1
2π

e(n+1/2)ix − e−(n+1/2)ix

e(1/2)ix − e−(1/2)ix

The Dirichlet kernel Kn(x − y) admits the following representation:

Kn(x − y) =
1
2π

∮
|z|=n+1/2

e izxe−izydz
e2πiz − 1

, z ∈ C.

As analogous representation can be obtained in terms of squared NLS
eigenfunctions.
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Sketch of the proof of completeness

We consider symmetrically normalized eigenfunctions for the Lax pair:[
φ1(γ, x, t)
φ2(γ, x, t)

]
=

1
ψ1(γ, 0, 0) + ψ2(γ, 0, 0)

[
ψ1(γ, x, t)
ψ2(γ, x, t)

]
,

which are meromorphic on rational Riemann surface ΓA with 2 double
points. ΓA is defined by equation

ν2 = (λ2 + |a |2)(λ2 − λ2
1)2. (2)

A point γ ∈ Γ is a pair of complex numbers γ = (λ, ν) ∈ C2, satisfying (2).

We also denote:

ν = (λ2 − λ2
1) µ, where µ2 = λ2 + |a |2.

Let σ and τ be the following involutions on ΓA

σ(λ, ν) = (λ,−ν), τ(λ, ν) = (λ̄, ν̄).
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Spectral curve for the Akhmediev breather

λ1

−λ
1

Γ

i|a|

−i|a|

A

λ11−λ

Figure: The curve ΓA as a two-sheeted covering of the complex plane
(left) and its topological model (right).

ΓA is a two-sheeted covering of the λ-plane:

ΓA → C : (λ, ν)→ λ.

It has two branch points

E0 : λ = i|a |, Ē0 : λ = −i|a |,

and two double points

(λ, ν) = (λ1, 0) and (λ, ν) = (−λ1, 0).P. G. Grinevich, P.M. Santini The linear instability near the Akhmediev breather



Spectral curve for the Akhmediev breather squared
eigenfunctions

−λ
1

λ1

−λ
1

Γ0

λ1

C0

C−

C+ ΓA

i|a|

−i|a|

−i|a|

i|a|

Γ̃A = ΓA ∪ Γ0.
ΓA is the Akhmediev breather
spectral curve. Γ0 = CP1 is
the Riemann sphere.

Blue lines connect the glued
pairs of points.
(λ = i, ν = 0)↔ λ = i,
(λ = −i, ν = 0)↔ λ = −i,
(λ = λ1, ν = 0)↔ λ = λ1,
(λ = −λ1, ν = 0)↔ λ = −λ1.

We integrate over C+ ∪ C−.
Integrals over C0 are equal to
0.

Figure: The spectral curve for the squared eigenfunctions Γ̃A is obtained
by gluing ΓA with the Riemann sphere Γ0.
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The squared eigenfunctions

A vector-function ~Φ(γ) = ~Φ(γ, x) on Γ̃A is defined by:

~Φ(γ) =

[
Φ1(γ)
Φ2(γ)

]
=



[
φ2

1(γ)
φ2

2(γ)

]
if γ ∈ ΓA ,

[
φ1(λ, ν)φ1(λ,−ν)
φ2(λ, ν)φ2(λ,−ν)

]
if γ ∈ Γ0.

We calculated explicitly the corresponding Cherednik differential we
have:

Ω̃(γ) =


[µ(λ2−λ2

1)+λ2
1+(µ2

1+λ2
1)λ2]

2

µ2(λ2−λ2
1)2 dλ if γ ∈ ΓA ,

−2
µ2(λ2−λ2

1)2+[λ2
1+(µ2

1+λ2
1)λ2]

2

µ2(λ2−λ2
1)2 dλ if γ ∈ Γ0.
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Let us define an analog of the Dirichlet kernel in the Fourier theory.

K (n)(x, y) =
1
π

∮
C+∪C−

[
Φ1(γ, x)
Φ2(γ, x)

] [
−Φ̄1(τγ, y), Φ̄2(τγ, y)

] Ω̃

e2iµL − 1
, (3)

C+ ∪ C− = {(λ, ν) ∈ ΓA : |λ| = Rn}, Rn =
√

(nπ/L)2 − 1 + 1/2.

If n → ∞, K (n)(x, y) coincide with the n-th Dirichlet kernel up to O(1/n)
corrections. On the other hand, K (n)(x, y) can be calculated as the sum
of residues. The integrand in (3) has:

1 First-order poles at the resonant points γm = (λm, µm) =

= (±
√

(mπ/L)2 − 1,mπ/L), 2 ≤ m ≤ n. The residues at these
points are Φk (γm, x)Φ̄k (τγm, y) times normalization constants;

2 Second-order poles at the branch points λ = ±i, µ = 0. The
residues at these points are linear combinations of these products
and their first derivatives with respect to the spectral parameter;

3 Third-order poles at the double points λ = ±λ1, ν = 0. The residues
at these points are linear combinations of these products and their
first and second derivatives with respect to the spectral parameter.
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Periodicity of the Dirichlet-type kernel

Where we use the properties of the Cherednik differential. We have to
check that

K (n)(x, y) =
1
π

∮
C+∪C−

[
Φ1(γ, x)
Φ2(γ, x)

] [
−Φ̄1(τγ, y), Φ̄2(τγ, y)

] Ω̃

e2iµL − 1
,

is L=periodic in x and y. But:

K (n)
lm (x + L , y) − K (n)

lm (x, y) =
(−1)m

π

∮
γ∈ΓA ,|λ|=RN

Φl(γ, x)Φ̄m(τγ, y)Ω̃,
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