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We study solutions of the nonlocal Whitham equation

oV ov
B V% 2 /da:Rx—:U)V(x t) (1)

that represents a wide class of equations which are of great interest for
nonlinear wave theory. The kernel of the integral term is conventionally
defined by the dispersion relation w = kR(k) with

o)

R(z) = / R(k)e ™ dk. (2)

—0o0

Here we examine a particular case of the Whitham equation with a
resonance dispersion relation

~ 1
B0 = T o ()
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That equation has been proposed to describe nonlinear acoustic waves in
simple peristaltic systems (Malkin, 1995). With small D? it is also
applicable to the waves in a medium with internal oscillators.

We study here specific features of solitary wave solutions to the equation
with the dispersion relation presented. It is shown that this equation
possesses both smooth and singularity involving solitons with exponential
asymptotics, bound states of solitons and solitary waves with oscillating
asymptotics. The velocity spectra of exponentially localized solitons turn
out to be discrete ones. By solitons, we understand solutions which decay
when a spatial variable goes to infinity.
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Dimensionless equations are written in a coordinate system moving to the
right with the speed of sound in an unperturbed fluid. The independent
variables = and ¢ represent phase and time; variable V' is proportional to
the pressure in the fluid. For peristaltic systems the only parameter D is
defined as

D? = (E;h?)/(12(1 — v*)pa’cg) (4)

where F,., ps,v are Young modulus, density and Poisson ratio of the shell
material, i and a are thickness and radius of the shell, ¢g is the sound
speed of the fluid. It should be noted that the form of the nonlocal term in
the equation depends on the poles location of the Fourier transform of the
kernel. While D? < 1/4 the poles are located in the real axis so that the
causative-type dispersion takes place, R(x < 0) = 0. But for D? > 1/4,
the poles are located symmetrically with respect to Im(k) = 0,

R(—x) = R(x), and dispersion therefore takes a space-type form. The
space-type dispersion occurs when the sound velocity of a fluid is greater
than the minimum phase velocity of bending oscillations of the shell. This
is caused by the origination of radiation physically similar to Cherenkov one.
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Hereafter we shall study an ordinary differential equation that is obtained
by the inversion of integral operator defined by the equation and
transferring to the localized traveling wave solutions.

The result takes the form of the fourth order differential equation

1
D?SUV) 4 8" L S =V, S =2V + 5V2

with traveling coordinate y = x + A¢, boundary conditions lim S(y) = 0, as
ly| — oo, and parameters D2 \.

One feature of this equation is its relation with the class of implicit
differential equations. We introduce new variables u; = S, up = 5’,

v1 = —S" — D?5" vy = DS”. Then the equation is reduced to the
reversible Hamiltonian system

/ / / /
uy = up, v; = ug — V(u1), Dup = vp, Dvy = —up — vy,

where V'(u1) is a two-valued function given by solving the equation

2u; = 2A\V + V2 w.r.t. V. The involution is

L : (uy,v1,u2,v2) — (u1, —v1, —up,v72), the fixed point set Fix(L) of L is
2-plane v;1 = up = 0.
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Since V is two-valued: V = —\ 4 /A2 4+ 2u;, it is more convenient to
consider the space R® with coordinates (u1,v1, up,v2, V) and its smooth
4-dimensional sub-manifold M given by real solutions of the equation. This
is a two-sheeted sub-manifold with respect to the projection

7 (ug,v1,u2,v2, V) — (u1,v1, up, v2), its image 7(M) is half-space

u1 > —\2/2. The shape of this sub-manifold is the direct product of a
parabola and a 3-plane.

On each sheet (upper one V(u1) = =X + \/A? 4+ 2u; and lower one

V = —X\ — /A2 + 2uq) the system generates its own differential system. A
question arises here: how to conform solutions on two sheets in order to
preserve continuity of S(y), when the related orbits hit the boundary of a
sheet, i.e. they satisfy the equality ui(yo) = —\?/2 and for this yo we have

u(yo) # 07

J1.M. J'IepMaM1 co-aeTopbl: H.E. KynaruConntoHbl n kaBnToHbl B HenokanbHOM Y 20 pekabps, 2021 7 /28



The rule is: in order to preserve continuity of u; we need to use the
reversibility of vector fields and make jumps on the boundary of both sheets
in accordance to the action of L.

Observe that if an orbit in a sheet does not cross the branching point its
behavior is defined by the smooth (in fact — analytic) vector field and any
tool working in this case can be used. Our main concern below will be on
solutions which are homoclinic orbits to equilibria. These solutions, if they
are symmetric ones, can be either smooth or with singularities (they cross
the branching plane several times). Smooth homoclinic orbits we call
sometimes solitons and those with singularities cavitons.
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Smoothing the system. The submanifold M is the graph of the function
u; = AV + V?2/2. Let us rewrite the system in variables (7, vy, uz, v2),
r=V+2A

=y, v] = M1 = N/2) — 7 +712/2, Dub = vo, Dvly = —(up + v1).

The system obtained has singularities along 3-plane » = 0 (it is not
defined). For upper sheet we get r =V + X\ = /A2 + 2u; > 0, but for
lower sheet the sign is opposite r = V + X = —y/A2 4+ 2u; < 0. In order to
eliminate the singularity, we multiply equations 2-4 at r and change the
“time” to s, ds = dy/r, obtaining a smooth differential system

dr dvi

dr dvy duz d
ds " ds

v
2 = rup, D=2 = —r(up+uy).

_ _ 2,3
= AN1-\/2)r—r<+r>/2, D I T
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a) b)

Figure: (a) Graph of a true 2-round soliton-caviton S(y); (b) and its smoothing 7(s).
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If we put D = 0 and from 3nd and 4th equations find up = —v1,v2 = 0,
insert this into first two equations we get a slow system.

uj = —v1, V] =u1 + A F VA2 + 2uq, (5)

Figure: Slow manifold dynamics with jumps.
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Now let us go to the smooth system in variables (r,v1), here r can take

any sign

= —vy, v = M1 = A/2)r —r? +73)2.
The Hamiltonian of the system is
B vj A2—=Nr2 3t

h 2 4 3 8’
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Figure: Phase portrait for smoothen system (?7).
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Types of equilibria for different (D?,)\).

The system can have different types of equilibria. For us the most
interesting are: O (saddle-center) on the upper sheet, it exists when

A€ (0,1);

If D? is small (the system is slow-fast one), then slow plane is almost
invariant elliptic manifold (Gelfreich-Lerman) and finding homoclinic orbits
to the saddle-center is a very complicated problem analytically and
numerically because of exponentially small splitting of separatrices (look at
the slow manifold!).

For A > 1 two equilibria exist on the upper sheet, O and another one

Py =(2(1—-X),0,0,0), the latter exists for 1 < A < 2. The types of these
equilibria depend on the value of D? : D? > 1/4, then O is an elliptic point
for 1 < A < Ao, Ao = 4D?/(4D? — 1), and O is a saddle-focus for A\ > \Ao;
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Figure: (a) 1-round homoclinic, A = 0.5, D? = 0.23; (b) Unfolding of this 1-round
soliton.

Multi-round solitons (smooth homoclinic orbits) are impossible, but
multi-round wave trains are possible.
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A situation may occur, when an orbit on an one-dimensional unstable
manifold of the saddle-center (which persists under small changes D, \)
gets lie on the stable manifold of some saddle periodic orbit 7y in the same
level of H. Since the system under consideration is, in addition, reversible,
and if saddle-center O and saddle periodic orbit v are symmetric, then
pairing orbit of the stable manifold of the saddle-center gets lie by
symmetry on the unstable manifold of 4. Thus, in this case a heteroclinic
connection is made up of two heteroclinic orbits, a symmetric saddle-center
and a symmetric saddle periodic orbit v (Lerman-Trifonov).
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A very subtle and interesting case arises for small positive 1 — A near the
point (0,0,0,0) on the upper sheet. This equilibrium is degenerate at

A =1 with double zero eigenvalue and two imaginary eigenvalues +iw.
After scaling the initial equation

d d
AN=1-¢% 1=¢y, —=c—, S=¢%X, p="
dy dr €

we come to the following equation that defines the behavior of solutions as
A—1-0

d*X d?’X 1 3 1

2 2 2 2
T X+ IX? 22X -ZX+ =X
N T 5+25 X1 -5 X+ S X+
e(—X +3X2 -~ 5X3+ 8X4)+~--.

with small parameter k. Numerical simulations allow us to hypothesize
Hypothesis. There is a neighborhood of the point (0,0) on the parameter
plane (k, ) such that a countable set of bifurcation curves exists which
correspond to the existence of homoclinic orbits of any roundness.
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Homoclinic orbits to saddle-focus

The calculations of equilibria and their types show, in particular, that if

D? > 1/4, then for positive A > A\ > 1 the equilibrium O on the upper
sheet is the saddle-focus. The simulations discovered the abundance of
symmetric homoclinic orbits to this equilibrium. Is it possible to prove their
existence rigorously? We prove the existence of two symmetric homoclinic
orbits to the equilibrium O on the upper sheet for small enough A — .
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Symmetric homoclinic and periodic orbits

l,."ﬁl’:?.l"’m 4':'
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To prove this, we need to find the sign of some coefficient A. We find it
reducing our problem to that being similar to the problem as for the
Swift-Hohenberg equation. To that end, let us scale the traveling
coordinate y = ¢, v = v/2D, in the initial equation of the fourth order.
After scaling and dividing at D? we get the equation

4D?

V) 420" 4 u = (1-4D? + 3

u— —u"+ —u’ 4.
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To calculate the coefficient, we remark that saddle-foci appear as A > \g
as D? > 1/4. Denote —v = 1 —4D? + % and consider v as small
positive parameter. After scaling u = —ku with kK = ﬂD/)\5/2 we come
to the equation of the form (we preserve old notations)

W) 420" fu = —vu+ Bud+ud 4 (6)
Let us write the equation in the form of two second order equations
WVt u=uv 0" +v=—vu+pBut+ud .
After scaling u — /vu, v — vv and denoting i = /v, we get the system

' +u = pv, V" +v = Bu? — p(u—ud) + O(u?).
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At 1 = 0 we have the system whose solutions are of the form

u = Aexpli€] + Aexp[—i€], v = Bexpli&] + B exp[—i&]—
5 (A2 exp[2ig] + A% exp[—2i€]) + 25| AJ2.

We add new variables v’ = p, v’ = ¢, and differentiate these equalities
considering them as change of variables (u, v, p,q) — (A, A, B, B). This
gives the expressions for p, ¢ through A, A, B, B. Observe that this change
of variables depend 27-periodically in £. Performing this change of
variables, we come to the system of four first order differential equations in
variables (A, A, B, B) which is the 27-periodic system in the so-called
standard form of the averaging method X’ = uF (X, ¢) by
Krylov-Bogolyubov.
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For our case we have

27 + 232

B A
A'=—ip—, B' = iu;[l — |AP], A =cc., B'=cc. (7)

2
The coefficient we sought for is . It is positive that means the
existence of the homoclinic skirt in the system (7) which is integrable and
the existence of two symmetric homoclinic orbits in the initial system due
to its reversibility (looss& Perouemé). The structure of the averaged
system is easily restored if introduce real variables (a,b,c,d), A = a + ib,
B = ¢+ id. In these variables we have a Hamiltonian system

27+2ﬁ
9

b 27 + 232
d = e ¢ = WD), U = d, i = - L), L=

with Hamiltonian
- 2+ d? _a2+b2 . L(
2 8 16
and an additional integral K = ad — bc. The common level H = K =0
gives the homoclinic skirt, i.e. one-parameter family of homoclinic orbits to
the equilibrium O of a saddle type with merged 2-dimensional stable and

unstable manifolds.
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