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Ismonodromic quantization of the second
Painlevé equation by means of autonomous

Hamilton systems with two degrees of freedom

B. I. Suleimanov
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Nonstationary Schrödinger equations corresponding to solutions of
the classical Hamilton system

(λk)
′
τ = H′

µk , (µk)
′
τ = −H′

λk (k = 1, 2, ..., n),

with the Hamiltonian H(τ, µ1, µ2, ..., µn, λ1, ....λn) have the form

εΨτ = H(τ,−ε
∂

∂x1
, ...− ε

∂

∂xn
, x1, ..., xn)Ψ. (I)

Here ε = i~ = ih/(2π) (h – Plank constant).
Example. Any solution to the second Painlevé equation
λ′′ = 2λ3 + τλ can be represented as a coordinate λ of Hamilton
system with Hamiltonian H = µ2/2 − (2λ4/2 + τλ2/2). Indeed,
this system has the form

λ′
τ = H′

µ = µ, (µ)′τ = −H′
λ = 2λ3 + τλ.

Corresponding Schrödinger equation has the form

i~Ψ′
τ = −~2

2 Ψ′′
xx +

x4 + tx2

2 Ψ. (II)
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All six Painlevé equations compatibility conditions for linear
equations of the form (R. Garnier, 1912):

Wxx = P(τ, x)W, Wτ = B(τ, x)Wx −
1
2Bx(τ, x)W.(∗)

For the second Painlevé equation λ′′ = 2λ3 + τλ the two
corresponding ODE

B =
1

2(x − λ)
,

P = (x4 − λ4) + τ(x2 − λ2) + (λ′)2 − λ′

x − λ
+

3
4(x − λ)2 .

have simultaneous solutins W(τ, x). The change V =
√

(x − λ)W
give simultaneous solution of two ODE
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Vxx =
Vx

x − λ
+ [(x4 − λ4) + τ(x2 − λ2) + (λ′)2 − λ′

x − λ
]V,

Vτ =
Vx − λ′V
2(x − λ)

.

They imply that the solution V( tau, x) satisfies the identity

Vτ =
Vxx
2 − [

x2 + τx2

2 + H(τ, λ(τ), λ′(τ)]V.

Here the function ������ H(τ, λ(τ), λ′(τ)) with λ = λ(τ) and
µ = λ′(τ) coincides the above Hamiltonian of the second Painlevé
equation (where λ = λ(τ) and µ = λ′(τ)). The transformation
Ψ = exp (

∫ τ
τ∗

H(ν, λ(ν), µ(ν))dν)V transform it to following analog
of the Schrödinger equation (II) with ~ = −i.

Ψτ =
Ψxx
2 − x4 + τx2

2 Ψ.

Similar facts are valid for the all six of Painlevé equations.
(Suleimanov B.I., 1988).
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The second Painlevé equation u′′ = 2u3 + tu is also compatibility
condition of two linear ODU (Flashka-Newell pair)

Ψζ =

(
−i(4ζ2 + t + 2u2) 4iζu − 2u′t)

−4iζu − 2u′t i(4ζ2 + t + 2u2)

)
Ψ, (III)

Ψt =

(
−iζ iu
−iu iζ

)
Ψ. (IV)
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V.Vasov :For each of the six sectors (j = 1, 2, . . . , 6)

Σj = {ζ ∈ C |π(j − 1) < arg ζ < π(j + 1)} (V) (1)

there is globally smooth in the variable ζ ∈ C fundamental solution
Φj(t, ζ) of system (3), which at |ζ| → ∞ in this sector

Φj(t, ζ) =

(
1 0
0 1

)
+

∞∑
j=1

Pj(t)
ζ j

 exp

{
−i(4ζ3 + tζ)

(
1 0
0 −1

)}
.

(2)
If the function u satisfies the second Painlevé equation
u′′ = 2u3 + tu, these fundamental solutions Φj(t, ζ) can be chosen
so that they also satisfy the second ODE system IV with
independent variable t.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

These simultaneous fundamental solutions of the systems are
related to each other through the Stokes matrices

Φj+1(t, ζ) = Φj(t, ζ)Sj, (3)

where Sj are triangles

S2j−1 =

(
1 0

s2j−1 1

)
, S2j =

(
1 s2j
0 1

)
(4)

and and independent from t. The set of these Stokes matrices
constitutes the set of monodromy data. (The independence of this
data from the t variable is the basis for the name IDM.)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fair relationship

sk+3 = sk, s1 + s2 + s3 + s1s2s3 = 0.

The points of the complex two-dimensional manifold

P2 =
{
(s1, s2, s3) ∈ C3 | s1 + s2 + s3 + s1s2s3 = 0

}
Although in a general situation the solutions of the Painlevé
equations cannot be written out explicitly, the IDM allows one to
effectively describe the relationship between the asymptotics of
each of the Painlevé transcendents as t to infty along any ray of
the complex plane. In this sense, the solutions of the Painlevé
equations are no worse than, say, the solutions of its linear limit,
the Airy equation A′′

tt = tA.
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But the solutions of the linear IDM systems themselves for the
corresponding Painlevé solutions, although they cannot be solved
explicitly, with respect to this kind of constraint formulas is also to
a certain extent not worse than solutions of the classical
hypergeometric equation and its various degenerations (as well as
solutions of other linear differential equations admitting explicit
representations in the form of integrals of the Fourier type).
For example, for any of the solutions of the Painlevé equations,
uniquely defined by the points of a two-dimensional manifold, one
can describe the asymptotics as |ζ| → ∞ of simultaneos solution
Φj(t, ζ) of linear systems IDM (III), (IV) along it any ray of the
complex plane ζ. This statement obviously follows from the validity
for Φj(t, ζ) in the sector Σj of the asymptotics (2) and the relations
and form of the Stokes multipliers. To this we can add the fact that
for each of the solutions Φj(t, ζ) asymptotics as |t| → ∞ along any
ray of the complex t – plane. It is clear that similar properties are
possessed by solutions of linear systems IDM for all Painlevé
equations and their various higher isomonodromic analogs.
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Matrix

W = (Ψ(η))−1Ψ(ζ) exp (t3/12 −
∫ t

t∗
[u′2 − u4 − τu2]dτ)

satisfies the it scalar equations

8Wt = Wζζ + Wηη + [16(ζ4 + η4) + 8t(ζ2 + η2)]W,

Wζζ − Wηη = 2Wζ + Wη

ζ − η
+ [16(η4 − ζ4) + 8t(η2 − ζ2)]W.

All elements of the matrix W(ζ, η, t) are entire functions of all
three of their independent variables
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These general solutions also satisfy the equation with the
coefficients it independent of t

4W′
t =

ζ2W′′
ηη − η2W′′

ζζ

ζ2 − η2 +
(ζ2 + η2)(W′

ζ + W′
η)

(ζ2 − η2)(ζ − η)
− 16ζ2η2W.

Changes r = ζ + η � ρ = ζ − η reduce it to the equation

4W′
t = W′′

rr + W′′
ρρ +

(r2 + ρ2)

rρ2 (−ρW′′
rρ + W′

r)− (r2 − ρ2)2W.

Now the dilatation r = ε−1x, ρ = ε−1y and t = ∓4ετ with
ε3 = ∓i~ give nonstationary Schrödinger equation

i~Wτ = −~2[W′′
xx +W′′

yy +
(x2 + y2)

xy2 (−yW′′
xy +W′

x)]− (x2 − y2)2W,
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The equation corresponds, in particular, to the classical Hamilton
system with two degrees of freedom

(λk)
′
τ = H′

µk , (µk)
′
τ = −H′

λk (k = 1, 2),
with Hamiltonian

H = H(q1, q2, p1, p2) = p2
1+p2

2−
q2

1 + q2
2

q1q2
p1p2+−cp1

q2
−cp2

q1
−(q2

1−q2
2)

2.

The changes

Q1 = −q2
1

2 , Q2 =
q2

2 − q2
1

4 , P1 =
p1
q1

+
p2
q2

, P2 = −2p2
q2

(5)

give solutions of autonomus Hamilton system
(Q1)

′
τ = H′

P1 = 4Q1P1 + (4Q1 − 2Q2)P2 + c, (6)
(Q2)

′
τ = H′

P2 = (4Q1 − 2Q2)P1 + 4(Q1 − Q2)P2, (7)
(P1)

′
τ = −H′

Q1 = −2(P1 + P2)
2, (8)

(P2)
′
τ = −H′

Q2 = 2P1P2 + 2P2
2 − 32Q2. (9)

with the Hamiltonisn
H = 2Q1P2

1 + (4Q1 − 2Q2)P2 + c. (10)
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The function J = 2P1P2 + P2
2 + 32(Q1 − Q2) has the form

J = 32c(τ − τ0). (Without loss of generality, we can further
assume that tau0 = 0).
The foolowing formulaes are right:

32Q2 = 2P1P2 + P2
2 + 32Q1 − 32cτ, (11)

32Q1 = −(P2)
′
τ + P2

2 + 32cτ, (12)

(γ – arbitrary constant)

P1 =
−(φ′

τ )
2 + φ4

256c − τφ2

2 + γ, (13)

P2 =
(φ′

τ )
2 − φ4

256c +
τφ2

2 − φ

2 − γ, (14)

where φ is equation(φ)′′ττ = 2φ3 − 128cτφ. (If c = ∓i~/2, then te
change φ = (32)1/2ε transformed it to ODE u′′ = 2u3 + tu.)
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Let x and y run through the real axes. This means that by the
formulas ζ = ε−1Z and η = ε−1Y, the variables ζ and η are
expressed through the variables Z and Y, also running through all
valid values. That is, the variables ζ and η for each of the three
possible values of varepsilon change along the corresponding three
straight lines of the complex plane, made up by two diametrically
opposite Stokes rays.
Matrix Φ−1(t, η)Φ(t, ζ) has form(
Φ22(t, η)Φ11(t, ζ)− Φ12(t, η)Φ21(t, ζ) Φ22(, η)Φ12(ζ)− Φ12(η)Φ22(ζ)
Φ11(t, η)Φ21(t, ζ)− Φ21(t, η)Φ11(t, ζ) Φ11(η)Φ22(ζ)− Φ21(η)Φ12(ζ)

)
,

(15)
where (

Φ11(t, η) Φ12(t, η)
Φ21(t, η) Φ22(t, η)

)
–fundamental simultaneous solution of ODE of IDM in form
Flashka-Newell.


