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Electron phase space holes — solitary structures we are interested in

In spacecraft measurements they are observed
as solitary waves with positive potentials
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these solitary waves are kinetic modes existing
due to a depletion of the phase space density
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Electrostatic solitary waves with distinct speeds associated
with asymmetric reconnection

D.B. Graham', Yu. V. Khotyaintsev', A. Vaivads', and M. André'’
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1. Electron holes have distinctly different velocities in the plasma rest frame, |Vigy — Vj| is in the range

from just a few km/s up to 20,000 km/s, electrostatic potential amplitudes @, are from a few up to a
few hundred volts and parallel spatial scales d are from 0.5 up to 30 km. In normalized units the spatial
scales and amplitudes are typically Ap<d) $10 Ap and 1073 T,<e®(<0.1 T,. The parallel spatial scales are

shown to be correlated with a local Debye length A,

The statistical analysis of time intervals between sequentially observed fast and slow electron holes
showed that electron holes of the different types are not associated with each other and produced by

instabilities, which operate independently.

1. ESWs with distinct time scales, corresponding to ESWs with distinct speeds and length scales, are
observed at the dayside magnetopause.

2. The ESWs were observed near the separatrices of asymmetric reconnection where magnetospheric and
magnetosheath electrons were observed. When the ESWs are observed, the magnetosheath electron
population dominates, suggesting that magnetosheath electrons are responsible for ESW generation.

3. The observation of ESWs with distinct speeds suggests that multiple instabilities are active at the
magnetopause when magnetic reconnection is occurring.



The problem of slow electron holes acceleration

Dynamics of Electron Holes in an Electron-Oxygen-Ion Plasma

B. Eliasson and P. K. Shukla

Institut fiir Theoretische Physik IV Fakultdt fiir Physik und Astronomie, Ruhr-Universitidt Bochum, D-44780 Bochum, Germany

(Received 12 March 2004; published 19 July 2004)

The dynamics of electron holes (EHs) in an electron—oxygen-ion plasma is studied by means of
Vlasov simulations. It is found that EHs are attracted by ion density maxima but repelled by ion density
minima. Standing EHs repel ions owing to the positive EH potential, creating an ion density cavity
which ejects the EH, which propagates away from the cavity with a constant speed. On the other hand,
propagating EHs can be trapped at ion density maxima. The results of our simulations will help in
understanding the nonlinear dynamics of EHs in space and laboratory plasmas.

DOI: 10.1103/PhysRevLett.93.045001
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How can slow plasma electron holes exist?

I H Hutchinson
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, USA

One dimensional analysis is presented of solitary positive potential plasma structures whose veloc-
ity lies within the range of ion distribution velocities that are strongly populated: so called “slow”
electron holes. It is shown that to avoid the self-acceleration of the hole velocity away from ion
velocities it must lie within a local minimum in the ion velocity distribution. Quantitative crite-
ria for the existence of stable equilibria are obtained. The background ion distributions required
are generally stable to ion-ion modes unless the electron temperature is much higher than the ion
temperature. Since slow positive potential solitons are shown not to be possible without a signif-
icant contribution from trapped electrons, it seems highly likely that such observed slow potential
structures are indeed electron holes.
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Summary: Slow electron holes certainty cannot be stable in Maxwellian plasmas. But their
stability can be achieved in plasmas with non-Maxwellian lons.



MMS

* Magnetospheric Multiscale
mission
* Launched in 2015

* Studies Earth’s magnetosphere

* Four identical spacecrafts flying in a
tetrahedron

* 3D electric field measurements; fast
particle measurements

.............




MMS1: 08/04/2017
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We consider a particular 3 minute long interval

of MMS data

MMS spacecraft were located at about 20 R;
from the Earth, in the plasma sheet boundary
layer

Quiet conditions with magnetic field was around
30 nT in magnitude and was pointed
earthward(along the x-axis in the GSE)

Electron density remained stationary at the level
of 1.3cm™

lon bulk velocity was within 200 km/s

Broad band electrostatic noise is persistent
around the ion plasma frequency f;

A cluster of of 751 Bi-polar structures with (¢ > 0)



Multispacecraft interferometry

technique
MMS spatial separation along local magnetic field [km]
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Speed from 1 to 2| -759 km/s
Speed from 1 to 3| -690 km/s
Speed from 1 to 4| -705 km/s

Mean| -719 km/s
Deviation| +- 36 km/s



reduced ion VDF [cm'3(cm/s)"]

Background ion velocity Distribution
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* Reduced ion velocity distribution function f(v||) was computed at 150 ms cadence using ion

distribution functions measured aboard MMS1

* |lon population consists of a core population and a beam propagating antiparallel to the local

magnetic field, i.e. in the same direction as the solitary waves

* Velocities of detected solitary waves cluster close to the local minimum between the core and beam

populations

* Double-hump structure is well preserved through out the whole time interval and velocities of

structures strongly correlate with the position of the local minimum
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Conlusions

We considered a particular event in the Earth’s plasma sheet boundary layer,
where significant turbulence of electron holes has been detected

Using multispacecraft interferometry we were able to determine velocities of
electron holes, which happened to be of order of ion thermal velocity.

We made use of local measurements of ion velocity distribution. It was shown, that
slow electron holes are accompanied by double-hump ion distributions, with
speeds of slow electron holes clustered in the local minimum.

By employing the new theory of electron hole stability, we prove that observed
double-hump ion distributions allow avoiding self-acceleration otherwise prevents
electron holes from remaining slow

Additional analysis of the previously observed slow electrons holes confirms
that the considered event was not exceptional



