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Abstract

An exact analytical solution to the one-dimensional compressible Euler equations in the form of a nonlinear simple wave
IS obtained.

In contrast to the well-known Riemann solution, the resulting solution and the time of its collapse have an explicit
dependence on the initial conditions.

The turbulence energy dissipation rate fluctuations universal spectrum is obtained Ep (k) < k=2/3 which is near the

same as the experimental value Ep(k) « k=267 of Kholmyansky (1972) that is known for the atmospheric turbulence
in the surface layer.

The exact solution for the universal spectrum E(k) k=8/3 of turbulence energy in a compressible medium is also
obtained, which is consistent with observational data for the turbulence spectrum in the solar wind and magnetosheaths of
the Earth and of Saturn (F. Sahraoui, et.al PRL, 2006; R. Bandypadhyay, et.al. PRL, 2020).




1.Euler’'s equations

The one-dimensional Euler equation and continuity equation are represented in the form:
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For the polytropic gas, additionally to (1.1), (1.2), also the following relation is considered:
p
P =pPoC )’ (1.3)
Assuming for the case of simple wave that V can be also represented as a function of p only, following relations
are obtained:
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The Riemann equation is represented in the next form, known also as the Hopf-Burgers (HB) equation:
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2. Explicit solution of the Riemann problem

1.
Velocity V(x,t) = [~ dEVe(E)(1 +t d“;f))a(f — X + tuy (%)), 2.1)
up($) = Vo($) £ co($);
: 00 d
Density p(x,0) = [, dEpo()(1 + LTHEE — x + tug(§); po(x) = p(x,t = 0) (2.2
- dVo(x) | dco(X)\ _ 0., _ 1 Car —
Collapse time: 1+ ¢ - + . )=0;ty = max|d“$") sug =Vo £ ¢ (2.3)
For the initial velocity distributions Vo (x) = a exp( — x?/2x5)
__ 2xqv/e
to = a(y+1) (2.4)




3.1. Solution regularization by dissipation
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Regularization condition: U > Uepn = tl (3.3)
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Regularization and predictability problem
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The minimum grid size 4,,,;,, in the numerical integration of the Navier-Stokes equations, which is associated with

the inevitable truncations at large wave numbers K,y 4




3.2. Solution regularization by dissipation

Stochastic modeling of effective viscosity
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4.1. Intermittence and dissipation fluctuations

1

Integral kinetic energy of the turbulent flow of a compressible medium E, = 71 ffooo dx p(x; O)V?(x; t)
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4.2. Intermittence and dissipation fluctuations

&c = —Ip because for politropic medium Ip =0
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Local energy dissipation rate and enstrophy: g(x,t) = ; ( - :
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Structural function: Sp(r) = (s(x + r; t)e(x; t)) — (€)?
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Spectrum Ep(k) = Cpk™2/3 exp(—tok?v) (4.2)

In the inertial range of scales L~ 1<< k << I, = (2tyv)~1/?
Ep ock ™" (4.3).




4.3. Intermittence and dissipation fluctuations

Up to now days, for'5 the scaling law -5/3, corrections are introduced related to the heuristic description:
E(k) «x (€)?/3k™3(Lk)™4, where q = %and L is the integral turbulence scale.
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Gurvich , Zubkovsky 1963), (1965)

u~0.33 Kholmyansky (1972)

u=1/3  Exactsolution (Phys. Fluids, 2021)
Spectra of the squared derivative of
the wind speed




5. Turbulence energy spectrum:
E(k) = [7 drR(r)exp(— ikr) = ——I()I"(k) ; e = J,” dkE(k) (5.1)
I(k) =] deO(x)—exp(lkS(x t)) = —f dx exp(lkS) I'(k) = I(—k)
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In the limit kKL >> 1 and t - ¢

E(k) = Cgk™8/3 s (5.2)
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In (4.7) @(0) = \/%fo ducos(u?); ®(z) = \/mAi(z) - the Airy function and [17] (see formula (b. 8)

on page 784 in [17] where @(0) = 32/3\1/,?2/3) ~ 0.629).
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Electric field pulsation spectrum of aeroelectric structures
in the surface layer of atmosphere.

Spectrum of the electric-field pulsations under fog
conditions according to the data obtained at the Borok
Geophysical Observatory on September 18-19, 1999

from 22:00 to 01:00 UT.-

From: S. V. Anisimov, E. A. Mareev, N. M.Shikhova, and E.
M. Dmitriev, Universal spectra of electric field pulsations in
the atmosphere, Geophys. Res. Lett., vol.29 (24), 2217
(2002); https://doi.org/10.1029/2002GL015765
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Magnetic field turbulence spectra for the solar-wind (SW)

in blue (when d; = 75km; |(V)| = 330km s)

and magnetosheath (MSH) in red (when d; = 56km;

(V)| = 278km s ) interval. The solid vertical line represents kd; = 1
with the wave vectork = 27tf/|[(V)|, wherefis the frequency [12]

(see Fig.1 in R. Bandyopadhyay, et.al. , PRL 2020).
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Magnetic field turbulence spectrum for the magnetosheath
(when proton Larmor radius p = 75km). The red line is a
direct fit revealing a power law k=% . Two other power laws
are plotted for comparison: k=7/3 (green) and k=5/3 (blue)
(see Fig.6 in F. Sahraoui, et.al, PRL, 2006).F. Sahraoui, G.
Belmont, L. Rezeau, and N. Cornilleau-Wehrlin, Anisotropic
turbulent spectra in the terrestrial magnetosheath as seen by
the Claster spacecraft, Phys. Rev. Lett., 96, 075002 (2006);
www.doi.org/10.1103/PhysRevL ett.96.075002
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1x10 005 umresolution ¢ figion implosion at t=1.71 ns for three different
. 1x10° L simulations resolutions are taken from Fig.3 in Thomas V.
X 1x102 A. , and Kares R. J., Drive asymmetry and the origin of
W 410 turbulence in a inertial confinement fusion implosion Phys.

15c10° Rev. Lett., 109, 075004 (2012)
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The possibility of arise the helical turbulence with the chiral symmetry breaking on the stages before stagnation is stated
on this base. A possible reason for this is a violation of spherical symmetry during the fusion implosion due to the
occurrence of rotation of the medium behind the front of a converging spherical shock wave by the instability mechanism.
Indeed, on the basis of numerical simulation Galtier S., and V. David, Inertial/kinetic-Alfvén wave turbulence:
A twin problem in the limit of local interactions,Phys. Rev. Fluids, 5, 044603 (2020) is stated that in the perpendicular
direction to the direction of rotation, the inertial waves turbulence has an anisotropic one-dimensional scaling law—8/3
as in the anisotropic turbulence spectrum in the space plasma.
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Results of PIC-MHD simulations of the resonant cosmic ray Sl,

including the effect of ion—neutral damping. The parameters of these
simulations are as follows: initial streaming speed of CRs is ud=ua % 10,
density ratio is nCR=nbg % 104 , and the typical energy of CRs

iIsE0 GeV.

Panel shows the magnetic wave spectrum at the early saturated phase

of the instability

Panel compares the case when there is no damping (blue lines) and with
moderate ion—neutral damping using red lines (damping rate in is 0.5

of the maximum growth rate of the instability, Cmax). 14




Conclusions

Thus the exact closed-form explicit analytical solution to the Riemann problem for the Euler one-dimensional
hydrodynamics equations is obtained.

The regularization by dissipation factors is determined for that solution for unlimited time, which gives unexpected
positive resolution for the generalization of the Clay problem (www.claymath.org ) to the fluid and gas dynamics in the
compressible case.

On the base of explicit analytical form of the Riemann solution the explicit representation for the shock wave arising time
Is obtained for arbitrary initial conditions of the simple wave.

Closed explicit analytical representations are obtained for one-point and two-point moments of hydrodynamic fields and
for the energy spectrum, which gives an example of solving the turbulence problem based on the exact solution of one-
dimensional Euler equations for a compressible medium.

In this case, the turbulence spectrum power-law obtained from the exact solution of the Euler equation corresponds to the

parameters of the turbulent spectra observed in the Earth's and Saturn's magnetospheres, as well as for the Solar Wind and
for the turbulence arising during the fusion implosion.
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