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Introduction & Motivation: Collapse and the Kolmogorov-Ob ukhov theory

According to the Kolmogorov-Obukhov theory (1941)
velocity fluctuations at spatial scales l from the inertial
range obey the power-law 〈|δv|〉 ∝ ε1/3l1/3, where ε is the
mean energy flux from large to small scales. This formula
is easily obtained from the dimensional analysis.

Similarly, fluctuations for the vorticity field ω = ∇× v

diverge at small scales as 〈|δω|〉 ∝ ε1/3l−2/3, while the
time of energy transfer from the energy-contained scale
lE to the viscous ones is finite and estimated as
T ∼ l

2/3
E ε−1/3.

These two relations allow to link the Kolmogorov
spectrum formation with the blowup in the vorticity field
(collapse).
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Introduction & Motivation

The question whether finite time singularities develop in
inertial scales (in fact, in ideal fluids) is still open question,
in spite of certain progress in both numerical and
analytical studies.

Up to now, the question about blow-up existence for ideal
fluids within the 3D Euler remains controversial. In our
numerics (Agafontsev, Kuznetsov, Mailybaev 2015, 2017,
2019, 2022) for periodical boxes we have observed
formation of high-vorticity structures of the pancake type
with exponential growth of ω but without any tendency to
blowup. Such increasing is connected with the vorticity
compressibility. The latter follows from the vorticity ω
frozen-in-fluids.
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Introduction & Motivation

However, for flows of ideal fluids in the presence of rigid
boundaries recent findings, both analytical and numerical,
demonstrate blow-up behavior. For two-dimensional
planar flows in the region with non-smooth boundaries
Kiselev and Zlatos (2015) proved blow-up existence.

In 2014, 2015 Luo and Hou in numerical experiments for
axi-symmetrical flows with swirl inside the cylinder of
constant radius observed appearance of collapse just on
the boundary. It was a challenge why boundaries play so
important role in formation of singularities.

Influence of boundary on folding in inviscid fluids – p. 5



Introduction & Motivation

In 1985 E and Engquist reported some rigorous results
about blow-up existence for inviscid Prandtl equation for
some initial data.

It is worth noting that before, in 1980, the blowup
appearance in the Prandtl equation was observed in the
numerical simulations by Van Dommelen and Shen.

In 2003 Hong and Hunter investigated this problem for
both viscous and inviscid Prandtl equation for zeroth
pressure gradient. In particular, in the inviscid case they
noticed that singularity can form on the wall.
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Introduction & Motivation

In this talk we show that flat boundary itself introduces
some element of compressibility into flow which from our
point of view can be considered as a reason of the
singularity formation on the boundary. We will consider
the 2D and 3D inviscid Prandtl equations which describes
the dynamics of the boundary layer, and demonstrate that
singularity is formed for the velocity gradient on the wall. .
This process is nothing more than breaking (or folding for
2D Euler) phenomenon which is well known in gas
dynamics since the classical works of famous Riemann.
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Basic equations and mixed Lagrangian-Eulerian description

The inviscid Prandtl equation for 2D flows is written for the
velocity component parallel to the blowing plane y = 0:

ut + uux + vuy = −Px, ux + vy = 0

with the following boundary conditions:
v|y=0 = 0, limy→∞ u(x, y, t) = U(x).

NOTE: The Prandtl equation assumes that the along surface
scale L much larger the boundary layer thickness h: L≫ h.
Hence one can see from incompressibility condition that
u/L ≈ v/h, i.e. u≫ v. As a result, the pressure P = P (x). It
gives the Prandtl equations
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Basic equations and mixed Lagrangian-Eulerian description

Within the Prandtl approximation for inviscid flows it is
possible to introduce the vorticity as

ω = −
∂u

∂y

which satisfies the equation of the same form as for the 2D
Euler fluids:

ωt + uωx + vωy = 0.

Thus, ω is the Lagrangian invariant. By this reason, its values
will be bounded at all t > 0. However, for another components
of the velocity gradient such restrictions are absent. As we
will see below, ux as well as vy can take arbitrary values, in
particular, infinite ones.
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Basic equations and mixed Lagrangian-Eulerian description

For Px = 0, u is a Lagrangian invariant. Let n be some
Lagrangian quantity (advected by the fluid), obeys the
equation

nt + unx + vny = 0, ux + vy = 0.

For its solution n = n(x, y, t), define inverse function
y = y(x, n, t). In this case we have new independent
Lagrangian variable n and old Eulerian coordinate x (note, for
the Prandtl equation such transformation was introduced first
time by Crocco). Transition to this description is the mixed
Eulerian-Lagrangian one which represents non-complete
Legendre transformation. Fixing n in y = y(n, x, t) yields the n
-level line and therefore this transform is the transition to the
movable curvilinear system of coordinates.
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Basic equations and mixed Lagrangian-Eulerian description

Then we find how derivatives with respect to variables (x, y, t)

(the l.h.s) and derivatives relative to (x, n, t) (the r.h.s) are
connected with each other:

∂f

∂t
=

1

yn
[ftyn − fnyt],

∂f

∂x
=

1

yn
[fxyn − fnyx],

∂f

∂y
=

fn
yn
.

Substitution of these transforms into the equation of motion
for n gives the kinematic condition, well known for
free-surface hydrodynamics:

yt + uyx = v.
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Basic equations and mixed Lagrangian-Eulerian description

Introduce streamfunction ψ so that u = ψy, v = −ψx. By
means of formulas for derivatives these relations read as

u =
1

yn
ψn, v = −ψx +

yx
yn
ψn.

Substitution of these formulas into the equation for y results
in the linear relation between y and ψ:

yt = −ψx.
Note, that in this equation all derivatives are taken for fixed n.

This equation can be easily resolved by introducing the
generating function θ(x, n, t):

y = θx, ψ = −θt.

To find θ(x, n, t) one needs to know dynamics of the velocity.
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Solution to the inviscid Prandtl equation

Consider first Px = 0. In this case for the inviscid Prandtl
equation we have Eq.

u = 1
yu
ψu,

which after substitution of θ transforms into

∂θu
∂t

+ u
∂θu
∂x

= 0.

This equation evidently has the following solution:

θu = F (x− ut, u)

where F is an arbitrary smooth function determined from the
boundary-initial conditions. Integration with respect to u yields

θ =

∫ u

f(x,t)

F (x− zt, z)dz + g(x, t).
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Solution to the inviscid Prandtl equation

Here f(x, t) and g(x, t) are another arbitrary functions to be
defined from the B-I conditions.
It is worth noting that at y = 0 and Px = 0 the inviscid Prandtl
equation is nothing more than the Hopf equation

ut + uux = 0,

which solution is written in the following implicit form (simple
Riemann wave)

u = u0(a), x = a+ u0(a)t

or
u = u0(x− ut).

This means that on the boundary we have breaking, i.e. the
formation of singularity in a finite time.
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Solution to the inviscid Prandtl equation

Breaking happens when the derivative

∂u

∂x
=

u′0(a)

1 + u′0(a)t

at some point x = x∗ first time, t = t∗, becomes infinite. It is
evident that t∗ = mina [−1/u′0(a)] . Then it is possible to
establish that the general solution is matched with the
boundary conditions at y = 0 if one puts

f(x, t) = u(x, 0, t)

(this is solution of the Hopf equation) and g(x, t) = 0 so that

y =

∫ u

f(x,t)

∂

∂x
F [x− zt, z]dz

ψ = −

∫ u

f(x,t)

∂

∂t
F [x− zt, z]dz.
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Solution to the inviscid Prandtl equation

Near the breaking point,

ux ≃ −
1

τ + β(∆a)2

where τ = t∗ − t, ∆a = a− a∗.
Thus, this dependence demonstrates a self-similar
compression, ∆a ∝ τ 1/2. The denominator, up to the constant
multiplier C, coincides with the Jacobian,
J = ∂x/∂a = C (τ + βa2) , where we put a∗ = 0. Integration of
this equation gives the cubic dependence:
x = C (τa+ βa3/3). Thus, in the physical space we get more
rapid compression than in the a-space : x ∝ τ 3/2.
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Solution to the inviscid Prandtl equation

For βa2 ≫ τ , the Jacobian becomes time-independent,
J ∼ x2/3. Hence, as τ → 0 we arrive at the singularity for ux,
ux ∝ x−2/3 . Any time changes of ux happen at the narrowing
region in the a-space, a ∝ τ 1/2, or equivalently at x ∝ τ 3/2. It
results in the following self-similar asymptotics,

ux ≃
1

τ
F (ξ), ξ =

x

τ 3/2

where function F (ξ) as ξ → ∞ is ∼ ξ−2/3. Hence we have the
power law:

max |ux| ∝ ℓ−2/3.

This is a general asymptotics for folding, independently
whether the singularity happens in finite or infinite time.

Influence of boundary on folding in inviscid fluids – p. 17



Solution to the inviscid Prandtl equation

For arbitrary dependence P (x) a solution is found from
integration of ODEs:

d

dt
u = −Px,

d

dt
x = u,

which are equivalent to the Newton equation: ẍ = −Px. The
first integral (energy) E(a) = ẋ2/2 + P (x) = u20(a)/2 + P (a),

allows to define the mapping x = x(a, t). The breaking time t∗
is found as a minimal root T (> 0) for equation J(a, T ) = 0,

where t∗ = mina T (a) and J = ∂x/∂a .
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Behavior for the vorticity gradients on the boundary

Now calculate how ω behaves at the breaking point. Remind,
ω = −uy is the Lagrangian invariant.
For simplicity consider the pressureless case. Differentiation
of the vorticity equation with respect to x and then putting
y = 0 where v = 0 and vx = 0 yield the following

∂ωx

∂t
+ u

∂

∂x
ωx = −uxωx.

The equations for characteristics are
dx/dt = u(x, t), dωx/dt = −uxωx. Substitution of
ux ≃ (t− t∗)

−1 at the breaking point gives the same singular
behavior for ωx there:

ωx ≃
A

t− t∗
.
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Solution to the 2D inviscid Prandtl equation

Concluding this part, note that singularities for the velocity
gradient on the boundary is a result of collision of two
counter-propagating slipping flows. In the first simulations
(Dommelen and Shen, 1980; Hong and Hunter, 2003) this
interaction was shown to lead to the formation of jets in
perpendicular to the boundary direction. Breaking (as a
folding happening in a finite time) for the slipping flows in the
2D Prandtl equation becomes possible because the pressure
gradient normal to the boundary can not prevent the
formation of jets.
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Breaking in the 3D inviscid Prandtl equations

The 3D inviscid Prandtl equations have the form

ut + (u∇)u+ vuz = −∇P (r), (∇u) + vz = 0

where r = (x, y) and u are, respectively, coordinates and
velocity components parallel to the wall, ∇ = (∂x, ∂y), v is
the normal (‖z) velocity component.

Hence for slipping boundary conditions we arrive at the
2D Hopf equation

ut + (u∇)u = −∇P (r)

which also gives breaking.
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Breaking in the 3D inviscid Prandtl equations

Consider for simplicity the case P (r) = const. Then the
velocity gradient Uij = ∂ui/∂xj satisfies the following matrix
equation

dU

dt
= −U2

which solution has the form

U = U0(a)(1 + U0(a)t)
−1

where U0(a) and a are the initial values of U and positions of
fluid particles.
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Breaking in the 3D inviscid Prandtl equations

Expanding U0(a) through the projectors Pα yields

U =
∑
α

λαPα

1 + λαt

Hence it is seen that the breaking time

t0 = min
α,a

(−λα)
−1.

Near t = t0

U ∝ (t0 − t)−1

with the main contribution originating from the eigen value
corresponding to t0.
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Breaking in the 3D inviscid Prandtl equations

This gives simultaneous singularities for both symmetric part
(stress tensor)

S = 1/2(U + UT )

and antisymmetric part (vorticity)

Ω = U − UT .

Singularities for both parts have the cusp form, like in the 1D
case. Note that in this case, unlike 1D where the breaking
criterion is written as u′0 < 0, we have a few restrictions on λ
which are defined from quadratic equation. The first condition
is that eigen values λ should be real. Secondly, λ has to take
negative values.
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Breaking in the 3D inviscid Prandtl equations

As we see breaking of the slipping flows in 2D Prandtl and 2D
Euler is accompanied by the appearance of jets in the
perpendicular direction to the slipping boundary. The same
situation takes place in 3D (at least, for the inviscid Prandtl
equations). From another side, breaking (or folding
happening in a finite time) in the inviscid Prandtl
approximation for the general initial conditions should
produce growth of the perpendicular to the slipping boundary
vorticity. Combination of these both factors gives an indication
for understanding a mechanism of tornado generation.
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Conclusion

We have developed a new concept of the formation of big
velocity gradients with the blow-up behavior or with the
exponential in time increase for the slipping flows in
incompressible inviscid fluids. These processes develop
as a folding due to compressible character of the slipping
flows.

For the 2D inviscid Prandtl equation we have developed
the mixed Lagrangian – Eulerian description based on the
Crocco transformation.

Application of this description to the inviscid Prandtl
equation allows to construct its general solution written in
the implicit form.
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THANKS FOR YOUR ATTENTION
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