Распад оптического импульса на два плазмона и формирование периодических поверхностных структур

И.В. Оладышкин, Институт прикладной физики РАН, Нижний Новгород

ХХХІ Научная сессия Совета РАН по нелинейной динамике ИО РАН, Москва, 19–20 декабря 2022 г.

ПЛАН

на случайном возмущении є

Introduction

The problem of LIPSS: efficiency of SPP excitation

FIRST EXPERIMENTS:

Milton Birnbaum, Semiconductor Surface Damage Produced by Ruby Lasers, 1965

FIG. 1. Photomicrograph of surface damage of a (111) face of a germanium sample.

FEW-SHOT EXPERIMENTS:

I. Gnilitskyi et al., Scientific reports 7 (1), 1-11 (2017) scanning; overlap – 2 shots in one point

SINGLE-SHOT EXPERIMENTS:

E. L. Gurevich, Self-organized nanopatterns in thin layers of superheated liquid metals, Phys. Rev. E (2011)

золото (3.3 Дж/см²) и тантал (4.7 Дж/см²)

ELECTRODYNAMICS VS. HYDRODYNAMICS

J. Bonse, S. Gräf, Laser Photonics Rev. 2020. Review: Maxwell meets Marangoni

SURFACE PLASMON-POLARITONS

J. E. Sipe, Phys. Rev. B, 1983-1984 Role of surface plasmonpolaritons

SURFACE PLASMON-POLARITONS

J. E. Sipe, Phys. Rev. B, 1983-1984 Role of surface plasmonpolaritons

PROBLEM

- Why do periodic structures appears even under single femtosecond pulse action?
- Is the magnitude of surface plasmons enough to explain periodic melting?

THE RESULTS BRIEFLY

- There is a positive feedback due to thermal nonlinearity. Periodic heating of electrons = periodic perturbation of permittivity
- The time of instable growth can be as short as 15-20 fs at damaging intensities
- So, it is short enough to **influence significantly** on SPP magnitudes

XA Ζ E_i $E^{-}e^{+ikz}$ E^+e^{-ikz} $E_{\Sigma}^{2}(z)$ $\delta T(x, z, t)$ metal

INCIDENT PULSE DECAY

I. Oladyshkin, Self-Induced Decay of Intense Laser Pulse into a Pair of Surface Plasmons, PRB **106**, L081408 (2022)

VERY CLOSE, BUT DIFFERENT:

- Evgeny L. Gurevich et al., PRB 95, 054305 (2017) heat conductivity decrease with temperature growth
- V. B. Gildenburg, I. A. Pavlichenko, Nanomaterials 10, 1461 (2020)
 ionization of the unstable layer (in glass)

Excitation of SPP

Conversion to SPP on a random perturbation of $\boldsymbol{\epsilon}$

STATEMENT OF THE PROBLEM

- Flat surface of a metal with Re(ε) < -1
- Normally incident laser pulse
- Conversion of the incident wave to SPPs on the ε perturbation

UNPERTURBED SOLUTION

- x > 0: $\mathbf{E}_i(t, x, z) = \mathbf{z_0} E_i \exp(i\omega t + ik_0 x)$
- x > 0: $\mathbf{E}_r(t, x, z) = \mathbf{z_0} E_r \exp(i\omega t ik_0 x)$
- x < 0: $\mathbf{E}_t(t, x, z) = \mathbf{z_0} E_t \exp(i\omega t + \alpha x)$

$$E_t = \frac{2E_i}{1 - \sqrt{\varepsilon}}$$
$$E_r = E_i \frac{1 + \sqrt{\varepsilon}}{1 - \sqrt{\varepsilon}}$$

ARBITRARY PERTURBATION

 $\delta\varepsilon(x,z,t) = \delta\tilde{\varepsilon}(x,t) \cdot \cos k_{\varepsilon} z$

Wave equation inside the medium:

$$\Delta \mathbf{H} - \frac{\varepsilon}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{H} = \frac{1}{c} \frac{\partial}{\partial t} [\nabla \varepsilon, \mathbf{E}]$$

$$\frac{\partial^2 H_1^{\pm}}{\partial x^2} - k_{\varepsilon}^2 H_1^{\pm} + \varepsilon_0 k_0^2 H_1^{\pm} = -\frac{ik_0 E_t e^{\alpha x}}{2} \frac{\partial \delta \tilde{\varepsilon}(x)}{\partial x} - \frac{k_0^2 \delta \tilde{\varepsilon}(x)}{2} H_t e^{\alpha x}$$
Solution:

$$x < 0: H_1^{\pm} = A e^{\alpha_2 x} + \Psi(x)$$

$$x > 0: H_1^{\pm}(x) = C e^{-\alpha_1 x}$$

$$\frac{\partial^2 H_1^{\pm}}{\partial x^2} - k_{\varepsilon}^2 H_1^{\pm} + \varepsilon_0 k_0^2 H_1^{\pm} = -\frac{ik_0 E_t e^{\alpha x}}{2} \frac{\partial \delta \tilde{\varepsilon}(x)}{\partial x} - \frac{k_0^2 \delta \tilde{\varepsilon}(x)}{2} H_t e^{\alpha x}$$
Solution:

$$x < 0: H_1^{\pm} = A e^{\alpha_2 x} + \Psi(x)$$

$$x > 0: H_1^{\pm}(x) = C e^{-\alpha_1 x}$$
where $\Psi(x) = -\frac{ik_0 g - k_0^2 \sqrt{\varepsilon_0}}{2} - \frac{E_i \delta \tilde{\varepsilon}}{2} e^{(g+\alpha)x}$

where
$$\Psi(x) = -\frac{l\kappa_0 g - \kappa_0 \sqrt{\varepsilon_0}}{(g+\alpha)^2 - k_{\varepsilon}^2 + \varepsilon_0 k_0^2} \frac{E_i \delta \varepsilon}{(1-\sqrt{\varepsilon_0})} e^{(g+\alpha)x}$$

$$A = \frac{\varepsilon_0 \alpha_1 + g + \alpha}{\alpha_2 + \varepsilon_0 \alpha_1} \frac{ik_0 g - k_0^2 \sqrt{\varepsilon_0}}{(g + \alpha)^2 - k_{\varepsilon}^2 + \varepsilon_0 k_0^2} \frac{E_i \delta \tilde{\varepsilon}}{(1 - \sqrt{\varepsilon_0})}$$

$$C = \frac{g + \alpha - \alpha_2}{\alpha_2 + \varepsilon_0 \alpha_1} \frac{ik_0 g - k_0^2 \sqrt{\varepsilon_0}}{(g + \alpha)^2 - k_{\varepsilon}^2 + \varepsilon_0 k_0^2} \frac{E_i \delta \tilde{\varepsilon}}{(1 - \sqrt{\varepsilon_0})^2}$$

$$\frac{\partial^{2}H_{1}^{\pm}}{\partial x^{2}} - k_{\varepsilon}^{2}H_{1}^{\pm} + \varepsilon_{0}k_{0}^{2}H_{1}^{\pm} = -\frac{ik_{0}E_{t}e^{\alpha x}}{2}\frac{\partial\delta\tilde{\varepsilon}(x)}{\partial x} - \frac{k_{0}^{2}\delta\tilde{\varepsilon}(x)}{2}H_{t}e^{\alpha x}}{2}$$
Solution:

$$x < 0: H_{1}^{\pm} = Ae^{\alpha_{2}x} + \Psi(x)$$

$$x > 0: H_{1}^{\pm}(x) = Ce^{-\alpha_{1}x}$$
Where $\Psi(x) = -\frac{ik_{0}g - k_{0}^{2}\sqrt{\varepsilon_{0}}}{(g + \alpha)^{2} - k_{\varepsilon}^{2} + \varepsilon_{0}k_{0}^{2}}\frac{E_{i}\delta\tilde{\varepsilon}}{(1 - \sqrt{\varepsilon_{0}})}e^{(g + \alpha)x}$

$$A = \frac{\varepsilon_{0}\alpha_{1} + g + \alpha}{\alpha_{2} + \varepsilon_{0}\alpha_{1}}\frac{ik_{0}g - k_{0}^{2}\sqrt{\varepsilon_{0}}}{(g + \alpha)^{2} - k_{\varepsilon}^{2} + \varepsilon_{0}k_{0}^{2}}\frac{E_{i}\delta\tilde{\varepsilon}}{(1 - \sqrt{\varepsilon_{0}})}$$

$$C = \frac{g + \alpha - \alpha_{2}}{\alpha_{2} + \varepsilon_{0}\alpha_{1}}\frac{ik_{0}g - k_{0}^{2}\sqrt{\varepsilon_{0}}}{(g + \alpha)^{2} - k_{\varepsilon}^{2} + \varepsilon_{0}k_{0}^{2}}\frac{E_{i}\delta\tilde{\varepsilon}}{(1 - \sqrt{\varepsilon_{0}})}$$

$$\omega = \omega_{0} + \delta\omega$$
Resonance with SPP model

$$k_{\varepsilon} = k_{p} = \frac{\omega}{c}\sqrt{\frac{\varepsilon'}{1 + \varepsilon'}}$$

$$+ Drude model$$

$$+ Near the resonance:$$

$$\varepsilon = 1 - \frac{\omega_{p}^{2}}{\omega(\omega - iv)} \approx -\frac{\omega_{p}^{2}}{\omega^{2}} - i\frac{\omega_{p}}{\omega^{2}}$$

$$\frac{\partial^{2}H_{1}^{\pm}}{\partial x^{2}} - k_{\varepsilon}^{2}H_{1}^{\pm} + \varepsilon_{0}k_{0}^{2}H_{1}^{\pm} = -\frac{ik_{0}E_{t}e^{\alpha x}}{2}\frac{\partial\delta\tilde{\varepsilon}(x)}{\partial x} - \frac{k_{0}^{2}\delta\tilde{\varepsilon}(x)}{2}H_{t}e^{\alpha x}$$
Solution:

$$x < 0: H_{1}^{\pm} = Ae^{\alpha_{2}x} + \Psi(x)$$

$$A(\omega) = C(\omega) = -\frac{\omega_{0}}{\delta\omega - i\nu\omega_{0}^{2}/2\omega_{p}^{2}}\frac{\omega_{0}^{4}}{4\omega_{p}^{4}}E_{i}(\omega)\delta\tilde{\varepsilon}$$

$$k_{\varepsilon} = k_{p} = \frac{\omega}{c}\sqrt{\frac{\varepsilon'}{1+\varepsilon'}}$$
+ Drude model
+ Near the resonance:

$$A = \frac{\varepsilon_{0}\alpha_{1} + g + \alpha}{\alpha_{2} + \varepsilon_{0}\alpha_{1}}\frac{ik_{0}g - k_{0}^{2}\sqrt{\varepsilon_{0}}}{(g + \alpha)^{2} - k_{\varepsilon}^{2} + \varepsilon_{0}k_{0}^{2}}\frac{E_{i}\delta\tilde{\varepsilon}}{(1 - \sqrt{\varepsilon_{0}})}$$

$$\omega = \omega_{0} + \delta\omega$$

FINALLY,

conversion to SPPs at the resonant grating (equation for the envelopes):

Feedback

03

Growth of ϵ perturbation, instability development

THERMAL NONLINEARITY

Ultrafast heating:

- increase of the electron density **n**
- increase of the electron scattering rate $\boldsymbol{\nu}$

$$\varepsilon = 1 - \frac{\omega_p^2}{\omega(\omega - i\nu)} \cong -\frac{\omega_p^2}{\omega^2} - i\frac{\nu\omega_p^2}{\omega^3}$$

$$\nu(W_e) = \nu_0 + \xi \frac{W_e}{\hbar}$$

C. Fourment, F. Deneuville et al., PRB 89, 161110(R) (2014)

INTERFERENCE AND HEATING

Interference of the incident wave and standing wave of counter-propagating SPP \rightarrow periodic heating

FULL SYSTEM. INSTABILITY

SPP excitation $\left(\frac{\partial}{\partial t} + \nu \frac{{\omega_0}^2}{2\omega_n^2}\right) \tilde{E}_z^{\pm}(t) = -\frac{{\omega_0}^6}{4\omega_p^5} \tilde{E}_i(t)\delta\tilde{\varepsilon}$

e heating

Drude model

scattering ↑

 $\frac{\partial W_e}{\partial t} = v \frac{e^2}{2m\omega_0} \left| E_t^2 e^{2\alpha x} + 4E_t E_z^{\pm} e^{(\alpha + \alpha_2)x} \cos k_{\varepsilon} z \right|$

 $\nu(W_e) = \nu_0 + \xi \frac{W_e}{\hbar}$

 $\varepsilon \simeq -\frac{\omega_p^2}{\omega^2} - i\frac{\nu\omega_p^2}{\omega^3}$

FULL SYSTEM. INSTABILITY

SPP excitation

e heating

Drude model

scattering ↑

$$\frac{\partial W_e}{\partial t} = v \frac{e^2}{2m\omega_0} \left| E_t^2 e^{2\alpha x} + 4E_t E_z^{\pm} e^{(\alpha + \alpha_2)x} \cos k_{\varepsilon} z \right|$$

 $\left(\frac{\partial}{\partial t} + \nu \frac{\omega_0^2}{2\omega_n^2}\right) \tilde{E}_z^{\pm}(t) = -\frac{\omega_0^6}{4\omega_n^5} \tilde{E}_i(t)\delta\tilde{\varepsilon}$

 $\varepsilon \simeq -\frac{\omega_p^2}{\omega_p^2} - i\frac{\nu\omega_p^2}{\omega_p^3}$

 $\nu(W_e) = \nu_0 + \xi \frac{W_e}{\hbar}$

Initial stage of the instability development:

Estimations:

Laser pulse: 100 fs, 800 nm, 1 J/cm² Au: ξ = 0.5, $\varepsilon_o \cong -26 - 1.85i$

- Initially: $\Gamma_0^{-1} \cong 50 \text{ fs}$
- After heating: $\Gamma_0^{-1} \cong 10-15$ fs

DECAY. SATURATION REGIME

Due to strong heating the SPP lifetime goes down to 20–40 fs

Balance between the pumping and absorption

$$\begin{pmatrix} \frac{\partial}{\partial t} + v \frac{\omega_0^2}{2\omega_p^2} \end{pmatrix} \tilde{E}_z^{\pm}(t) = -\frac{\omega_0^6}{4\omega_p^5} \tilde{E}_i(t) \delta \tilde{\varepsilon}$$
$$\delta \varepsilon \simeq -i \frac{\delta v \omega_p^2}{\omega^3}$$

$$\tilde{E}_{z,sat}^{\pm} = i \frac{\omega_0}{2\omega_p} \tilde{E}_i \cong E_t / 4$$

- modulation of the total electric field from 0.5 E_t to 1.5 E_t
- contrast in the laser intensity: 9 times!

Numerical modeling 04

Estimations and preliminary results of calculations

LASER PULSE DECAY ON A RANDOM SURFACE

calculations by Daniil Fadeev, IAP RAS

Ex

x3 t=260429

LASER PULSE DECAY ON A RANDOM SURFACE

calculations by Daniil Fadeev, IAP RAS

С

Time –

CONCLUSION

- There is a **positive feedback** between the SPP excitation and perturbation of the medium permittivity
- According to the estimations, this influences strongly on the process of metal heating by the laser pulses of damaging intensities

I. Oladyshkin, Phys. Rev. B 106, Lo81408 (2022)

THANKS!

oladyshkin@ipfran.ru

Ivan Oladyshkin, IAP RAS, Nizhny Novgorod

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**