XXXI session of the scientific council of RAS on "Nonlinear dynamics"

Nonlinear generation of sound waves by electromagnetic waves in space plasma

Ivan Vasko Space Sciences Laboratory, UC Berkeley IKI, Moscow

December 19, 2022 / 10⁴⁵ pm Berkeley time / 9⁴⁵ am Moscow time

vaskoiy@berkeley.edu

The Earth's Radiation Belts / Van Allen Probes Spacecraft /

~10 keV electrons with $T_{\perp} > T_{||}$ provide free energy for generation of whistler waves in the radiation belts

[Andronov&Trakhtengerts, 1964]

sub-relativistic electron fluxes in the Earth's radiation belts are strongly affected by whistler waves

> plenty of nonlinear physics involved and observed !

Whistler Waves / Electron Plasma Mode /

whistler wave magnetic and electric fields can be decomposed into electromagnetic and electrostatic

B = rot **A**, **E** =
$$-\frac{1}{c}\frac{\partial A}{\partial t} - \frac{\partial \Phi}{\partial z} e_z$$

strictly parallel propagation

whistler waves are purely electromagnetic & circularly polarized

oblique propagation

whistler waves have non-zero electrostatic field parallel to propagation direction k

A Novel Nonlinear Phenomenon / Van Allen Probes Observations /

electromagnetic components (Bx & Ey, By & Ex) look rather ordinarily: whistler wave propagating at ~15° to background magnetic field

electrostatic field Ez consists of nonlinear spikes phase-locked with electromagnetic components

Two-Fluid Linear Dispersion Relation

computed using two-fluid MHD: cold & hot electron fluids, ions are immobile.

cold & hot electron parameters are adopted from Van Allen Probes observations

whistler wave mode

$$\omega \approx \omega_c \cos \theta \frac{k^2 c^2}{k^2 c^2 + \omega_p^2}, \ \omega_p \gg \omega_c$$

 $\frac{\text{electron-acoustic mode}}{\omega \approx k \, v_{EA} \cos \theta}$

$$v_{EA} = (T_h/m_e)^{1/2} (n_l/n_0)^{1/2}$$

Nonlinear Dynamics of Whistler Waves in a Two-Temperature Electron Plasma

conservation

$$\frac{d}{dt} \left[u_j - \frac{eA_x}{mc} \right] = -2\pi f_c \ v_j \cos \theta,$$
$$\frac{d}{dt} \left[v_j - \frac{eA_y}{mc} \right] = 2\pi f_c \left(u_j \cos \theta + w_j \sin \theta \right),$$

$$\frac{dw_j}{dt} = \frac{e}{m} \frac{\partial \Phi}{\partial z} - \frac{1}{m n_j} \frac{\partial (T_j n_j)}{\partial z} - 2\pi f_c v_j \sin \theta - \frac{e}{mc} \left[u_j \frac{\partial A_x}{\partial z} + v_j \frac{\partial A_y}{\partial z} \right],$$

$$\frac{dn_j}{dt} = -n_j \frac{\partial w_j}{\partial z}, \quad \frac{d}{dt} \equiv \frac{\partial}{\partial t} + w_j \frac{\partial}{\partial z},$$
figure of the second second

where j = l, h corresponds to the low- and highenergy populations, n_j , (u_j, v_j, w_j) and T_j are electron densities, bulk velocities and temperatures, -eand m are electron charge and mass. The Maxwell equations for the electrostatic and vector potentials are $\partial^2 \Phi / \partial z^2 = 4\pi e \left(\sum_j n_j - n_0 \right)$ and $\partial^2 \mathbf{A} / \partial z^2 =$ $(4\pi e/c) \sum_j (n_j u_j \hat{x} + n_j v_j \hat{y})$, where n_0 is the unperturbed electron density we study evolution of initially monochromatic whistler wave by numerically solving 11 two-fluid MHD equations

initial condition: a whistler wave with a particular wavenumber, realistic finite initial amplitude and wave normal angle of 15⁰

whistler waves with initial wavenumbers far from the crossover point, $k = k_c$, exhibit no distortions

Nonlinear Evolution of Whistler Wave / Initial Wave Number k~k_c/

Observations

Numerical Simulations

Theoretical Interpretation

$$\frac{d}{dt} \left[u_j - \frac{eA_x}{mc} \right] = -2\pi f_c \ v_j \cos \theta,$$
$$\frac{d}{dt} \left[v_j - \frac{eA_y}{mc} \right] = 2\pi f_c \left(u_j \cos \theta + w_j \sin \theta \right),$$

$$\begin{aligned} \frac{d}{dt} \left[u_j - \frac{eA_x}{mc} \right] &= -2\pi f_c \; v_j \cos \theta, \\ \frac{d}{dt} \left[v_j - \frac{eA_y}{mc} \right] &= 2\pi f_c \left(u_j \cos \theta + w_j \sin \theta \right), \\ \frac{dw_j}{dt} &= \frac{e}{m} \frac{\partial \Phi}{\partial z} - \frac{1}{m \; n_j} \frac{\partial \left(T_j \; n_j \right)}{\partial z} - 2\pi f_c \; v_j \sin \theta - \\ &- \frac{e}{mc} \left[u_j \frac{\partial A_x}{\partial z} + v_j \frac{\partial A_y}{\partial z} \right], \\ \frac{dn_j}{dt} &= -n_j \frac{\partial w_j}{\partial z}, \quad \frac{d}{dt} &\equiv \frac{\partial}{\partial t} + w_j \frac{\partial}{\partial z}, \end{aligned}$$

where j = l, h corresponds to the low- and highenergy populations, n_j , (u_j, v_j, w_j) and T_j are electron densities, bulk velocities and temperatures, -eand m are electron charge and mass. The Maxwell equations for the electrostatic and vector potentials are $\partial^2 \Phi / \partial z^2 = 4\pi e \left(\sum_j n_j - n_0 \right)$ and $\partial^2 \mathbf{A} / \partial z^2 =$ $(4\pi e/c) \sum_{j} (n_j u_j \hat{x} + n_j v_j \hat{y})$, where n_0 is the unperturbed electron density

near the crossover frequency compressional velocities w_i become non-negligible

nonlinear terms in hydrodynamic equations results in generation of electron-acoustic waves at the harmonics

 $(\omega_0, k_0) \to (2\omega_0, 2k_0), (3\omega_0, 3k_0), \dots$

the process is equivalent to steepening of sound waves

steepening time scale

$$\tau_s \sim 2A(mT_h)^{1/2} (eE_0)^{-1} \sim 40 \text{ ms}$$

 $A^{-1} = (n_h/n_l)^{1/2}(3+n_l/n_h)$

Thank You!

Vasko I. Y. , Agapitov O., Mozer F., Bonnell J., Artemyev A. V., Krasnoselskikh V., and Tong Y. (2018), Electrostatic Steepening of Whistler Waves Physical Review Letters, https://doi.org/10.1103/PhysRevLett.120.195101

Similar Parker Solar Probe Observations in the Solar Wind

Back Up

Electron Energy Spectrum / Van Allen Probes Observations /

Large-Amplitude Whistler Waves

even the largest-amplitude whistlers (up to a few hundred mV/m) exhibit quasi-sinusoidal waveforms indicating thereby absence of any nonlinear effects related to E²

thus, the effect we are looking at is of resonant nature

Cattell et al., GRL, 2008