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Oceans covered by ice

2

Sea ice covers about 12% of the world's oceans. Much of the world's sea ice is

enclosed within the polar ice packs in the Earth's polar regions: the Arctic ice

pack of the Arctic Ocean and the Antarctic ice pack of the Southern Ocean.

In winter seasons ice occupies significant ocean areas.
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Ice floes

Photo from https://xn----8sbiecm6bhdx8i.xn--

p1ai/%D0%A1%D0%B5%D0%B2%D0%B5%D1%80%D0%BD%D1%8B%D0%B9%20%

D0%9B%D0%B5%D0%B4%D0%BE%D0%B2%D0%B8%D1%82%D1%8B%D0%B9%2

0%D0%BE%D0%BA%D0%B5%D0%B0%D0%BD.html

https://сезоны-года.рф/%D0%A1%D0%B5%D0%B2%D0%B5%D1%80%D0%BD%D1%8B%D0%B9%20%D0%9B%D0%B5%D0%B4%D0%BE%D0%B2%D0%B8%D1%82%D1%8B%D0%B9%20%D0%BE%D0%BA%D0%B5%D0%B0%D0%BD.html
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Floating solar power plants on the ocean
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The well-know formula for the surface wave decay rate in a deep water 

is (Landau & Lifshitz, 1987):

Surface wave decay in a viscous fluid

Therefore, the spatial decay rate is g = 45/g3.

Observations show that in the ice-covered ocean surface perturbation 

decay approximately exponentially in space  ~ e−g x.

In addition, frequency downshifting of decaying wavetrain is observed.
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Surface wave decay in the ice-covered ocean

Data on decay rate measurements for surface waves in the ice-covered 

ocean are very uncertain: g ~ n, where 1.9 < n < 3.6

(Meylan et al., 2018).

Further, we assume that g = m3, albeit the theory is applicable to any 

power-type dependence with n > 0.
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Frequency red-shifting (downshifting).

The linear theory

Frequency dependence of the decay rate leads to the frequency 

downshifting in the wave spectrum due to higher-frequency 

components decay faster than low-frequency components, g = m3.

Example: 
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The Fourier-spectrum of the wavetrain is:
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In the course of pulse propagation, its Fourier components changes 

due to the non-uniform decay:
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where  =  /0,    = m 0
3x.
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Frequency red-shifting (downshifting).

The NLS theory

Weakly nonlinear wavetrains can be described by the nonlinear 

Schrӧdinger (NLS) equation:
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Alberello & Parau (Phys. Fluids, 2022) considered downshifting numerically

within the framework of the NLS equation with the Gaussian initial spectrum

with Ȓ() = g3.

Downshifting was obtained for

small (a) and big (b) dissipation

as shown in the figure for x = 0,

5, 20, 50 km.
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Frequency red-shifting (downshifting).

The NLS theory

We have reconsidered the problem within the NLS equation with the 

initial condition in the form of the narrow-band envelop NLS soliton :
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Real and imaginary parts of the dispersion relation.
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Coefficients of the NLS equation has been derived in the paper 

(Slunyaev, Stepanyants, Phys. Fluids, 2022):
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The surface displacement is  (x, t) = Re{ (x, t) exp[i(0t − k0x)]};

ki  −m[0
3 + 30

2( − 0)].
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When m = 0, there is an exact solution to the NLS equation in the form 

of the envelop soliton with two independent parameters (say, A and s):
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When m ≠ 0 but m << 1, this solution can be considered as an 

approximate with x-dependent parameters.

Dependence of parameters on x can be determined from the balance 

equations which follow from the NLS equation:
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Substituting in the balance equation the soliton solution with A(x) and 

s(x), we obtain:
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This system has the first integral:
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The dependence of soliton amplitude on the frequency shift is shown in 

the next figure.
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Using the first integral, we can readily obtain the solution:
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Note, in the NLS case, the initial rate of amplitude decay two times 

greater than in the linear case.

Dependences of normalized amplitudes A = A(x)/A(0) and frequencies

 = (x)/(0) within the linear and nonlinear theories.
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The theory presented above is valid only at the early stage of wavetrain

evolution while the frequency deviation from initial value 0 is small, 

|s|/0 << 1 because all coefficients of the NLS equation are frequency 

dependent.
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The modified NLS theory

The asymptotic theory of soliton propagation remains applicable, but 

the set of equations becomes not solvable analytically.
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This system can be easily solved numerically.
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Summary and conclusion

• In the course of wavetrain propagation in the ice-covered ocean, it

experiences decay and downshifting.

• Within the linear theory, the downshifting occurs only within the width

of the initial wavetrain spectrum due to the faster decay of high-

frequency components. No energy flux along the spectrum occurs.

• Small-amplitude wavetrains with narrow-band spectra can be

described by the NLS equation augmented by dissipative terms.

• Within the framework of weakly nonlinear theory, a wavetrain decays

faster; the energy flux along the spectrum occurs which leads to

greater frequency downshifting.


