XXXI Scientific Session
Council on Nonlinear Dynamics of RAS

Shirshov Institute of Oceanology of RAS
Moscow, December 19-20, 2022

ON A DISTRIBUTED NONLINEAR DYNAMICAL SYSTEM
IN THE SPACE OF DOUBLE-SIDED SEQUENCES

Rassadin A. E.

Higher school of economics, Nizhny Novgorod, Russia



Space L of the complex-valued double-sided sequences

Let u=1(...,u—p,...,U_1,Up,U1,...,Up,...) be the
complex-valued double-sided sequence. We shall say that u is an
element of the linear space of complex-valued double-sided
sequences L if for all z € K, where K ={ze€C| r<|z|<R}is
some open ring, series > "= y,z" is the Laurent series for some

n=—oo

analytical on K function U(z). Analytical on the ring K function

U(z) = 3°72° _ upz"is called generating function for vector u € L.
If v € L and v € L then:
+00
U(2)V(z)= > (uxv)a2",
n=—oo

where u x v denotes double-sided sequence with components:

+oo
(uxv), = Z Uk Vn—k » neZr.

k=—o00

It means that one can define finite product of two vectors from L
without usage of generating functions.



Genesis of space L:

Wi + W Wy = Wiy, w(x +2m,0) = w(x,0).
+oo
w(x,t) = Z wn(t) exp(—inx).
n=-—0o0
+oo
Wp=—n°wy+1i Z k wy wp_j .
k=—o00

Elimination of nonhomogeneity on k.

U=u—u*u.

u(t) is the curve in space IL.



How to construct a surface in space .7

Let us consider the following nonlinear countable-dimensional
system of integro-differential equations:

Punls.8) | Z/ x— &t up k(&0 dE=0, (1)

k=—0c0"
where {u,(x, t)}7="% is denumerable set of unknown functions.
System (1) ought to be provided by the next denumerable set of
initial conditions:

un(x,0) = u8(x), x € R. (2)

One can rewrite system (1) as dynamical system in L:

u(x +o00
. (ﬁt, 28 _/ u(x =& t)xu(€ t)ds,  u(x,t)eL. (3)

—00



Theorem 1.

General representation of exact solution of the Cauchy problem
(1)-(2) is equal to:

Uozk exp(i kx) dk dz
o=¢ [ ) eRle) de k()

s 14100z k) 21 27

where oo

U%(z; k) = / U°(z; x) exp(—1i k x)dx (5)
is the Fourier transform from the generating function of its initial
condition:

+oo
V(zix)= Y up(x)z", (6)
n=—o0

integration along the circle C, = {z € C || z |= p} being counter
clockwise.



Sketch of the proof:

+o00
U(z;x,t) = Z un(x, t)z", U(z;x,0) = U%(z; x) .

n—=——oo

0 X, +o0
U(gtx'f)Jr/oo Uz x — €,8) U(z; €, £)dE = 0.

Ulz; k,t) = /+OO U(z; x, t) exp(—i k x)dx.

W+Uz(z; k,t)=0, U(z; k,0) = U°%(z; k).
. 710( -
Uiz k1) = — L ER)
14t U%z; k)

400 710( -
U(z; x,t) :/ M exp(i k x) %
—00 1+tUO(Z;k) 27



Exact solution with oscillatory behavior

Let us consider the following vector {u9(x)}7=7% of initial

conditions:

uﬂm:c4wﬁ;{hﬂ(§)—nq(26} nEN,

B0 =7 a (B) @0 = @)

where Ay, ag > 0 and J,({) are Bessel functions of the first kind:

s[5 ()] & o

n—=—oo



Initial conditions with oscillatory behavior:
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Puc.: Graphs of the first functions u9(x) under Ag =1 and ag =1



Theorem 2.

Exact solution of the Cauchy problem (1)-(2) with initial conditions
(7) is equal to (n € N):

(—=1)"Ap [J <\/1+Aot‘X’> J (vl-l—AM’x‘)]
4agy/1 + Apt il ao -t

up(x, t) =
aq

A VIT Aot i
UO(X’ t)_ 230\/1+A0tJ1 < ao ) ’
u_n(x,t) = (=1)"un(x, t). (8)



Components of exact solution with oscillatory behavior:

u_(x,t)

uz(x,t)

Puc.: Spatiotemporal evolution of the first functions u,(x, t) under
Ao =1 and do = 1



Sketch of the proof:

S = 22 (= Ve[ 2 (1))

-1

U(Z; k, t) =Ap

2 2
1+A0t—|—k2< 2aoz> ]
zc—1

Uzix. 1) Ao ( 1>e [ \/71+Aot\x]< 1)}
zZ; X, = |z — — X —_— | Z — — .
43914 Apt z P 2 ag z



Exact solution with monotone behavior

Let us consider the following vector {u9(x)}7=7% of initial

conditions:

where Ay, ag > 0 and /,({) are modified Bessel functions:

exp [g <z+i>] — io h(C) 2"

n—=—oo



Initial conditions with monotone behavior:
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Puc.: Graphs of the first functions u%(x) under Ay =1 and ag = 1



Theorem 3.

Exact solution of the Cauchy problem (1)-(2) with initial conditions
(9) is equal to (n € N):

(—1)™1 Ag [/ <\ﬁ1+A0t\x|>+l <\ﬁ1+Aot\x1>]
4ap9+v/1 4+ Aot i a0 "

up(x, t) =
ap

Ao V1+ Agt |x|
up(x,t) = — h ,

2a30V1+ Apt a0

u_n(x,t) = up(x, t). (10)



Components of exact solution

with monotone behavior:

uz(x,t)

Puc.: Spatiotemporal evolution of the first functions u,(x, t) under
Ao =1 and do = 1



Concluding remarks

If generating function U(z; x, t) represents exact solution of the
Cauchy problem (1)-(2) with initial condition representing by
generating function U°(z; x) then for any p = 2,3,4,... generating
function U(zP; x, t) represents exact solution of the Cauchy
problem (1)-(2) with initial condition representing by generating
function U%(zP; x). In other words the Laurent expansion for
transformed generating function U(z”; x, t) gives one exact solution
{Om(x, t)}M=1% of the Cauchy problem (1)-(2) too as follows:

m=—o00
Unp(x, t) = un(x, t), nez, (11)

where up(x, t) are functions (8) or (10), and place between
components of double-sided vector {i,(x, t)}7=1% with numbers
np and np+ p are filled by zeros. The initial condition

{29 (x)}™M="2° in this case has the same structure as the formulas

a1).



At last let us consider the following nonlinear integro-differential
equation:

a +o0o +oo
ﬂ / / ulx =&y —m,t)u(§,n, t)d{dn =0,

provided by initial condition:

u(x,y,0) = u(x,y),  (x.y)€R:

It is easy to see that the Cauchy problem (1)-(2) arises from this
Cauchy problem .

THANK YOU FOR YOUR ATTENTION!



