XXXI Scientific Session Council on Nonlinear Dynamics of RAS

Shirshov Institute of Oceanology of RAS Moscow, December 19-20, 2022

ON A DISTRIBUTED NONLINEAR DYNAMICAL SYSTEM IN THE SPACE OF DOUBLE-SIDED SEQUENCES

Rassadin A. E.

Higher school of economics, Nizhny Novgorod, Russia

Space $\mathbb L$ of the complex-valued double-sided sequences

Let $u=(\ldots,u_{-n},\ldots,u_{-1},u_0,u_1,\ldots,u_n,\ldots)$ be the complex-valued double-sided sequence. We shall say that u is an element of the linear space of complex-valued double-sided sequences $\mathbb L$ if for all $z\in K$, where $K=\{z\in \mathbb C\mid r<\mid z\mid< R\}$ is some open ring, series $\sum_{n=-\infty}^{n=+\infty}u_nz^n$ is the Laurent series for some analytical on K function U(z). Analytical on the ring K function $U(z)=\sum_{n=-\infty}^{+\infty}u_nz^n$ is called generating function for vector $u\in \mathbb L$. If $u\in \mathbb L$ and $v\in \mathbb L$ then:

$$U(z) V(z) = \sum_{n=-\infty}^{+\infty} (u \star v)_n z^n,$$

where $u \star v$ denotes double-sided sequence with components:

$$(u \star v)_n = \sum_{k=-\infty}^{+\infty} u_k v_{n-k}, \qquad n \in \mathbb{Z}.$$

It means that one can define finite product of two vectors from $\mathbb L$ without usage of generating functions.

Genesis of space \mathbb{L} :

$$w_t + w w_x = w_{xx}$$
, $w(x + 2\pi, 0) = w(x, 0)$.
 $w(x, t) = \sum_{n = -\infty}^{+\infty} w_n(t) \exp(-i n x)$.
 $\dot{w}_n = -n^2 w_n + i \sum_{k = -\infty}^{+\infty} k w_k w_{n-k}$.

Elimination of nonhomogeneity on k.

$$\dot{u} = u - u \star u$$
.

u(t) is the curve in space \mathbb{L} .

How to construct a surface in space \mathbb{L} ?

Let us consider the following nonlinear countable-dimensional system of integro-differential equations:

$$\frac{\partial u_n(x,t)}{\partial t} + \sum_{k=-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_k(x-\xi,t) \, u_{n-k}(\xi,t) \, d\xi = 0 \,, \qquad (1)$$

where $\{u_n(x,t)\}_{n=-\infty}^{n=+\infty}$ is denumerable set of unknown functions. System (1) ought to be provided by the next denumerable set of initial conditions:

$$u_n(x,0) = u_n^0(x), \qquad x \in \mathbb{R}.$$
 (2)

One can rewrite system (1) as dynamical system in \mathbb{L} :

$$\frac{\partial u(x,t)}{\partial t} = -\int_{-\infty}^{+\infty} u(x-\xi,t) \star u(\xi,t) \, d\xi, \qquad u(x,t) \in \mathbb{L}. \quad (3)$$

Theorem 1.

General representation of exact solution of the Cauchy problem (1)-(2) is equal to:

$$u_n(x,t) = \oint_{C_\rho} \int_{-\infty}^{+\infty} \frac{\tilde{U}^0(z;k)}{1 + t \, \tilde{U}^0(z;k)} \frac{\exp(i \, k \, x)}{z^{n+1}} \, \frac{dk}{2 \, \pi} \, \frac{dz}{2 \, \pi \, i} \quad (4)$$

where

$$\tilde{U}^{0}(z;k) = \int_{-\infty}^{+\infty} U^{0}(z;x) \exp(-i kx) dx$$
 (5)

is the Fourier transform from the generating function of its initial condition:

$$U^{0}(z;x) = \sum_{n=-\infty}^{+\infty} u_{n}^{0}(x) z^{n}, \qquad (6)$$

integration along the circle $C_{\rho} = \{z \in C \mid |z| = \rho\}$ being counter clockwise.

Sketch of the proof:

$$U(z;x,t) = \sum_{n=-\infty}^{+\infty} u_n(x,t) z^n, \qquad U(z;x,0) = U^0(z;x).$$

$$\frac{\partial U(z;x,t)}{\partial t} + \int_{-\infty}^{+\infty} U(z;x-\xi,t) U(z;\xi,t) d\xi = 0.$$

$$\tilde{U}(z;k,t) = \int_{-\infty}^{+\infty} U(z;x,t) \exp(-ikx) dx.$$

$$\frac{\partial \tilde{U}(z;k,t)}{\partial t} + \tilde{U}^2(z;k,t) = 0, \qquad \tilde{U}(z;k,0) = \tilde{U}^0(z;k).$$

$$\tilde{U}(z;k,t) = \frac{\tilde{U}^0(z;k)}{1+t \tilde{U}^0(z;k)}.$$

$$U(z;x,t) = \int_{-\infty}^{+\infty} \frac{\tilde{U}^0(z;k)}{1+t \tilde{U}^0(z;k)} \exp(ikx) \frac{dk}{2\pi}.$$

Exact solution with oscillatory behavior

Let us consider the following vector $\{u_n^0(x)\}_{n=-\infty}^{n=+\infty}$ of initial conditions:

$$u_n^0(x) = (-1)^n \frac{A_0}{4 a_0} \left[J_{n+1} \left(\frac{|x|}{a_0} \right) - J_{n-1} \left(\frac{|x|}{a_0} \right) \right], \quad n \in \mathbb{N},$$

$$u_0^0(x) = \frac{A_0}{2 a_0} J_1 \left(\frac{|x|}{a_0} \right), \quad u_{-n}^0(x) = (-1)^n u_n^0(x), \tag{7}$$

where A_0 , $a_0 > 0$ and $J_n(\zeta)$ are Bessel functions of the first kind:

$$\exp\left[\frac{\zeta}{2}\left(z-\frac{1}{z}\right)\right] = \sum_{n=-\infty}^{+\infty} J_n(\zeta) z^n.$$

Initial conditions with oscillatory behavior:

Puc.: Graphs of the first functions $u_n^0(x)$ under $A_0=1$ and $a_0=1$

Theorem 2.

Exact solution of the Cauchy problem (1)-(2) with initial conditions (7) is equal to $(n \in \mathbb{N})$:

$$u_{n}(x,t) = \frac{(-1)^{n} A_{0}}{4 a_{0} \sqrt{1 + A_{0} t}} \left[J_{n+1} \left(\frac{\sqrt{1 + A_{0} t} |x|}{a_{0}} \right) - J_{n-1} \left(\frac{\sqrt{1 + A_{0} t} |x|}{a_{0}} \right) \right]$$

$$u_{0}(x,t) = \frac{A_{0}}{2 a_{0} \sqrt{1 + A_{0} t}} J_{1} \left(\frac{\sqrt{1 + A_{0} t} |x|}{a_{0}} \right) ,$$

$$u_{-n}(x,t) = (-1)^{n} u_{n}(x,t) . \tag{8}$$

Components of exact solution with oscillatory behavior:

Puc.: Spatiotemporal evolution of the first functions $u_n(x, t)$ under $A_0 = 1$ and $a_0 = 1$

Sketch of the proof:

$$U^{0}(z;x) = \frac{A_{0}}{4 a_{0}} \left(z - \frac{1}{z}\right) \exp\left[-\frac{|x|}{2 a_{0}} \left(z - \frac{1}{z}\right)\right].$$

$$\tilde{U}^{0}(z;k) = A_{0} \left[1 + k^{2} \left(\frac{2 a_{0} z}{z^{2} - 1}\right)^{2}\right]^{-1}.$$

$$\tilde{U}(z;k,t) = A_{0} \left[1 + A_{0} t + k^{2} \left(\frac{2 a_{0} z}{z^{2} - 1}\right)^{2}\right]^{-1}.$$

$$U(z;x,t) = \frac{A_0}{4 a_0 \sqrt{1 + A_0 t}} \left(z - \frac{1}{z}\right) \exp\left[-\frac{\sqrt{1 + A_0 t} \left|x\right|}{2 a_0} \left(z - \frac{1}{z}\right)\right].$$

Exact solution with monotone behavior

Let us consider the following vector $\{u_n^0(x)\}_{n=-\infty}^{n=+\infty}$ of initial conditions:

$$u_n^0(x) = (-1)^{n+1} \frac{A_0}{4 a_0} \left[I_{n+1} \left(\frac{|x|}{a_0} \right) + I_{n-1} \left(\frac{|x|}{a_0} \right) \right], \quad n \in \mathbb{N},$$

$$u_0^0(x) = -\frac{A_0}{2 a_0} I_1 \left(\frac{|x|}{a_0} \right), \quad u_{-n}^0(x) = u_n^0(x), \tag{9}$$

where A_0 , $a_0 > 0$ and $I_n(\zeta)$ are modified Bessel functions:

$$\exp\left[\frac{\zeta}{2}\left(z+\frac{1}{z}\right)\right] = \sum_{n=-\infty}^{+\infty} I_n(\zeta) z^n.$$

Initial conditions with monotone behavior:

Puc.: Graphs of the first functions $u_n^0(x)$ under $A_0=1$ and $a_0=1$

Theorem 3.

Exact solution of the Cauchy problem (1)-(2) with initial conditions (9) is equal to $(n \in \mathbb{N})$:

$$u_{n}(x,t) = \frac{(-1)^{n+1}A_{0}}{4a_{0}\sqrt{1+A_{0}t}} \left[I_{n+1} \left(\frac{\sqrt{1+A_{0}t}|x|}{a_{0}} \right) + I_{n-1} \left(\frac{\sqrt{1+A_{0}t}|x|}{a_{0}} \right) \right]$$

$$u_{0}(x,t) = -\frac{A_{0}}{2a_{0}\sqrt{1+A_{0}t}} I_{1} \left(\frac{\sqrt{1+A_{0}t}|x|}{a_{0}} \right),$$

$$u_{-n}(x,t) = u_{n}(x,t). \tag{10}$$

Components of exact solution with monotone behavior:

Puc.: Spatiotemporal evolution of the first functions $u_n(x,t)$ under $A_0=1$ and $a_0=1$

Concluding remarks

If generating function U(z;x,t) represents exact solution of the Cauchy problem (1)-(2) with initial condition representing by generating function $U^0(z;x)$ then for any $p=2,3,4,\ldots$ generating function $U(z^p;x,t)$ represents exact solution of the Cauchy problem (1)-(2) with initial condition representing by generating function $U^0(z^p;x)$. In other words the Laurent expansion for transformed generating function $U(z^p;x,t)$ gives one exact solution $\{\hat{u}_m(x,t)\}_{m=-\infty}^{m=+\infty}$ of the Cauchy problem (1)-(2) too as follows:

$$\hat{u}_{np}(x,t) = u_n(x,t), \qquad n \in \mathbb{Z}, \tag{11}$$

where $u_n(x,t)$ are functions (8) or (10), and place between components of double-sided vector $\{\hat{u}_m(x,t)\}_{m=-\infty}^{m=+\infty}$ with numbers $n\,p$ and $n\,p+p$ are filled by zeros. The initial condition $\{\hat{u}_m^0(x)\}_{m=-\infty}^{m=+\infty}$ in this case has the same structure as the formulas (11).

At last let us consider the following nonlinear integro-differential equation:

$$\frac{\partial u(x,y,t)}{\partial t} + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u(x-\xi,y-\eta,t) \, u(\xi,\eta,t) \, d\xi \, d\eta = 0,$$

provided by initial condition:

$$u(x, y, 0) = u^{0}(x, y), \qquad (x, y) \in \mathbb{R}^{2}.$$

It is easy to see that the Cauchy problem (1)-(2) arises from this Cauchy problem .

THANK YOU FOR YOUR ATTENTION!