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1. Formulation of the problem (1).

We study the long-time statistics of solutions to the following dimensionless problem,

ψt=0 = A0f (x), |f |2 = 1, (1){
iψt + ψxx + |ψ|2ψ = ip0ψ, while |ψ|2 < A2

f ,

iψt + ψxx + |ψ|2ψ = 0, for |ψ|2 = A2
f ,

(2)

where the function f (x) has unit average intensity and unit characteristic spatial scale δx = 1,
the coefficients A0 and Af are the initial and final mean amplitudes, and p0 is the renormalized
pumping coefficient. The overline denotes spatial averaging,

|f |2 =
1

L

∫ L/2

−L/2
|f |2 dx ,

over the simulation box x ∈ [−L/2, L/2] with periodic boundary; the period (basin length) is
considered to be large, L� δx = 1.

Hence, our results may depend on (i) initial and final mean amplitudes A0 and Af , (ii) noise
statistics given by the function f (x), (iii) pumping coefficient p0 and (iv) box size L.

Our work contains two major parts. In the first part, we study statistical characteristics of
wavefield examining the basic statistical function such as Fourier spectrum, probability density
function of intensity and autocorrelation of intensity. In the second part, we solve the direct
Zakharov-Shabat scattering problem for the grown-up wavefields and examine their inverse
scattering (IST) spectra.
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1. Formulation of the problem (2).

For adiabatic growth of turbulence, which goes sequentially through the statistically stationary
states of the integrable turbulence, we need to ensure that (i) the pumping is small, so that the
motion is governed primarily by the terms of the 1D-NLSE, and (ii) the initial state is already
close to stationary. The latter is possible if the initial wavefield is almost linear (e.g. small
noise), because the linear turbulence is stationary.

It is also instructive to consider the equation of motion (2) in the Fourier space,

i
∂ψk

∂t
− k2ψk + (|ψ|2ψ)k = ip0ψk , (3)

where (|ψ|2ψ)k is the Fourier-transformed nonlinear term of the 1D-NLSE. For adiabatic growth
of turbulence, we need to ensure that the pumping term is much smaller than all the other
terms present in the equation, including the dispersion term where there is an explicit
dependency on the wavenumber k. This must be satisfied for all wavenumbers, including the
smallest nonzero ones k = ±∆k = ±2π/L, i.e.,

p0 �
(

2π

L

)2

↔ L�
2π
√
p0
. (4)

In total, the conditions for adiabatic growth can be summarized as

p0 �
(

2π

L

)2

, A2
0 � 1. (5)

Our experiments indicate that when these conditions are met, the turbulence indeed grows
adiabatically.
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2. Numerical methods.

We use Runge-Kutta 4th order method on adaptive grid combined with Fourier interpolation
between the grids. For more accurate simulation of the growth stage, we rewrite the 1D-NLSE
for the function υ = e−p0t · ψ, eliminating the right-hand side of the equation. After turning off
the pumping, we have checked that the first ten integrals of motion are conserved by our
numerical scheme up to the relative errors from 10−10 (the first three invariants) to 10−6 (the
tenth invariant) orders.

The function f (x), that defines statistics of the initial noise in Eq. (1) and has unit average
intensity and unit characteristic spatial scale, is constructed as superposition of linear waves,

f (x) =
∑
k

Fk e
ikx+iφk , Fk = Gs e

−|k|s . (6)

Here s ∈ N is the exponent defining shape of the Fourier spectrum Fk , φk are random phases
for each k and each realization of the initial noise, Gs = [π 21/s/L Γ1+1/s ]1/2 is the

normalization constant such that the average intensity is unity, |f |2 = 1, L is the basin length,
and Γ is the Euler Gamma-function.

Base experiment (adiabatic regime): L = 128π, s = 2, A0 = 10−2, Af = 1 and p0 = 10−5.

For each of the several numerical experiments presented in this paper, we perform simulations
of time evolution in the formulation of Eqs. (1)-(2) for an ensemble of several hundred
realizations of the initial noise, which differ only in the set of random Fourier phases φk in
Eq. (6), and then average the statistical results over these realizations. We have checked that
larger ensemble sizes lead to the same statistical results.
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3. Results (wave statistics): stationary state (1).
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Figure 1: (a) Amplitude |ψ| for a single realization of wavefield at the end of the growth stage
t = t0 and (b) its subsequent space-time evolution after turning off the pumping, t ≥ t0. The
parameters correspond to the base numerical experiment: L = 128π, s = 2, A0 = 10−2, Af = 1
and p0 = 10−5. The inset in panel (a) shows fit for one of the pulses with the one-soliton
solution. Note that both panels demonstrate only the central quarter of the basin length.

The one-soliton solution of the 1D-NLSE can be written as,

ψs(x , t) = χ
exp [iV (x − x ′) + iθ′]

coshχ (x − x ′)
, x ′ = x ′0 + Vt, θ′ = θ′0 +

1

2
(χ2 + V 2)t,

where χ > 0, V , x ′ and θ′ are real-valued soliton amplitude, velocity and current position and
phase, while the constants x ′0 and θ′0 stand for the position and phase at t = 0.
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3. Results (wave statistics): stationary state (2).
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Figure 2: (a) Evolution of the ensemble-averaged kinetic energy 〈Hl 〉, potential energy 〈Hnl 〉
and fourth-order moment of amplitude κ4 after turning off the pumping, t ≥ t0. (b-d)
Statistical functions averaged over the ensemble and different time intervals t − t0 ∈ [0, 20] and
t − t0 ∈ [80, 100]: (b) the wave-action spectrum Sk , (c) the PDF P(I ) of relative wave intensity

I = |ψ|2/〈|ψ|2〉 and (d) the autocorrelation of intensity g2(x). The base numerical experiment:
L = 128π, s = 2, A0 = 10−2, Af = 1 and p0 = 10−5.
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3. Results (wave statistics): adiabatic regime.
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Figure 3: Statistical functions averaged over the ensemble and time interval t − t0 ∈ [0, 20] for
the experiments with different pumping coefficients p0 and fixed A0 = 10−2 and L = 128π: (a)

the wave-action spectrum Sk , (b) the PDF P(I ) of relative wave intensity I = |ψ|2/〈|ψ|2〉 and
(c) the autocorrelation of intensity g2(x). The initial spectrum is Gaussian, s = 2, and the final
average amplitude equals unity, Af = 1.

The conditions of adiabaticity:

p0 �
(

2π

L

)2

↔ L�
2π
√
p0
, A2

0 � 1.

Experiments with p0 ≤ 8× 10−5 demonstrate adiabatic regime of the turbulence growth.
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3. Results (wave statistics): universal adiabatic regime.
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Figure 4: Statistical functions averaged over the ensemble and time interval t − t0 ∈ [0, 20] for
the experiments with different initial amplitudes A0 and fixed p0 = 10−5 and L = 128π: (g) the

wave-action spectrum Sk , (h) the PDF P(I ) of relative wave intensity I = |ψ|2/〈|ψ|2〉 and (i)
the autocorrelation of intensity g2(x). The initial spectrum is Gaussian, s = 2, and the final
average amplitude equals unity, Af = 1.

From here we can introduce the notions of universal and non-universal adiabatic regimes: the
universal regime is the regime when decreasing the initial noise amplitude A0 doesn’t lead to
changes in statistics, and the non-universal one is the regime when it does.

The study of IST spectra shows that starting from A0 ≥ 3× 10−2 solitons start to appear in the
initial noise (1-2 for some noise realizations), while for A0 ≤ 10−2 they are absent.

D.S Agafontsev et al Bound-state soliton gas as a limit... XXXI Session on Nonlinear Dynamics 8 / 18



3. Results (wave statistics): dependency on initial spectrum.
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Figure 5: Statistical functions averaged over the ensemble and time interval t − t0 ∈ [0, 20] for
four super-Gaussian initial spectra with the exponents s = 1, 2, 8 and 32, and one
non-symmetric initial spectrum NS : (a) the wave-action spectrum Sk , (b) the PDF P(I ) of

relative wave intensity I = |ψ|2/〈|ψ|2〉 and (c) the autocorrelation of intensity g2(x). The other
parameters are the same as for the base experiment: L = 128π, A0 = 10−2, Af = 1 and
p0 = 10−5.

The function f (x), that defines statistics of the initial noise in Eq. (1) and has unit average
intensity and unit characteristic spatial scale, is constructed as superposition of linear waves,

f (x) =
∑
k

Fk e
ikx+iφk , Fk = Gs e

−|k|s .

Here s ∈ N is the exponent defining shape of the Fourier spectrum Fk , φk are random phases
for each k and each realization of the initial noise, Gs = [π 21/s/L Γ1+1/s ]1/2 is the

normalization constant such that the average intensity is unity, |f |2 = 1, L is the basin length,
and Γ is the Euler Gamma-function.
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3. Results (wave statistics): dependency on final amplitude Af .
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Figure 6: Statistical functions averaged over the ensemble and time interval t − t0 ∈ [0, 20] at
different average amplitudes Af = 0.125, 0.177, 0.25, 0.35, 0.5, 0.71 and 1: (a) the wave-action

spectrum Sk , (b) the PDF P(I ) of relative wave intensity I = |ψ|2/〈|ψ|2〉 and (c) the
autocorrelation of intensity g2(x). All the other parameters correspond to the base experiment:
L = 128π, s = 2, A0 = 10−2 and p0 = 10−5.

Potential-to-kinetic energy ratio α = 〈|Hnl |〉/〈Hl 〉 vs. mean amplitude Af :
Af = 0.125 α = 0.0625,
Af = 0.177 α = 0.125,
Af = 0.250 α = 0.25,
Af = 0.354 α = 0.5,
Af = 0.500 α = 1,
Af = 0.707 α = 1.74,
Af = 1.000 α = 1.98.
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4. Results – IST spectra, adiabatic regime (1).
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Figure 7: Amplitude-velocity diagrams of solitons for simulation from a single realization of
initial conditions at different stages of the pumping: (a) Af = 0.125, (b) Af = 0.177, (c)
Af = 0.25, (d) Af = 0.35, (e) Af = 0.5, (f) Af = 0.71 and (g) Af = 1. The parameters
correspond to the base experiment: L = 128π, s = 2, A0 = 10−2 and p0 = 10−5; panel (g)
refers to the wavefield from Fig. 1(a). Each dot represents a soliton within the studied
wavefield, ns shows total number of solitons detected, Ns/N demonstrates ratio between the
wave action of the solitonic part Ns and the total wave action N , and 〈χ〉 indicates the mean
soliton amplitude.
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4. Results – IST spectra, adiabatic regime (2).
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Figure 8: Typical grown-up wavefield and its approximation with the multi-soliton solution ψs

generated from the discrete part of the scattering data, for the base numerical experiment with
parameters L = 128π, s = 2, A0 = 10−2, Af = 1 and p0 = 10−5. Panel (a) shows absolute
value |ψ| of the grown-up wavefield (solid blue) and multi-soliton solution (dashed red), while
panel (b) represents zoom of panel (a) at the central region. Also, panel (b) illustrates complex
phase argψ of the grown-up wavefield (solid green) and multi-soliton solution (dashed black).
Note that panel (a) shows the same grown-up wavefield as in Fig. 1(a), but over the entire
basin length.
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4. Results – IST spectra, adiabatic regime (3).
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Figure 9: Amplitude-velocity diagrams of solitons for simulation from a single realization of
initial conditions at different stages of the pumping. The parameters are: L = 128π, s = 32,
A0 = 10−2 and p0 = 10−5.
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Figure 10: Typical grown-up wavefield and its approximation with the multi-soliton solution ψs ;
the parameters are L = 128π, s = 32, A0 = 10−2, Af = 1 and p0 = 10−5.
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4. Results – IST spectra, adiabatic regime (4).
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Figure 11: Soliton diagrams for the base numerical experiment with parameters L = 128π,
s = 2, A0 = 10−2, Af = 1 and p0 = 10−5: (a) for amplitudes χ and velocities V , and (b) for
positions x ′ and phases θ′. Blue dots and red circles represent solitons for two different
realizations of the grown-up wavefield. The left inset in panel (a) shows zoom of the main
figure, indicating that sufficiently large solitons have very small velocities, while their amplitudes
are strongly correlated between different realizations. The right inset in panel (a) demonstrates
the ensemble-averaged PDF of soliton amplitudes P(χ), which looks rough since different
realizations have very close sets of soliton amplitudes.

Figure (a) effectively shows that for universal adiabatic regime we every time grow the same
soliton gas irrespective of the Fourier phases of the initial noise.

Hypothesis: for adiabatic regime, phases of different solitons within the same wavefield are
uncorrelated.
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4. Results – IST spectra, non-adiabatic and non-universal regimes.
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Figure 12: Amplitude-velocity diagrams of solitons at the end of the growth stage for the
experiments with (a) non-universal adiabatic regime with A0 = 6× 10−2 and (b) non-adiabatic
regime with p0 = 32× 10−5.

Main distinctions from the universal adiabatic regime:

1) Distribution of soliton amplitudes is significantly wider with maxχ ' 6 (non-universal
adiabatic regime – presence of solitons in the initial noise and different action of the pumping
on the solitonic and non-solitonic contents? non-adiabatic regime – self-organization?).

2) Even at the end of the growth stage Af = 1 large solitons still have noticeable velocities; i.e.,
the solitonic states are still relatively far from being bound.

3) For both experiments, different realizations of the grown-up wavefield exhibit rather different
amplitude-velocity diagrams of their solitonic content.
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5. Conclusions.

1. We have studied numerically the integrable turbulence in the framework of the 1D-NLSE
model using a new approach called “growing of turbulence”. In this approach, a small linear
pumping term is added to the equation and the evolution is started from statistically
homogeneous Gaussian noise of small amplitude. After reaching a certain level of average
intensity, the pumping is switched off and the resulting integrable turbulence is examined.

2. For sufficiently small initial noise and pumping coefficient, and also for not very wide
simulation box (basin length), we have found that the turbulence grows in a universal adiabatic
(quasi-stationary) regime, with the growth trajectory not depending on the amplitude of the
initial noise, pumping coefficient or basin length. There are also non-universal adiabatic regime,
with its trajectory depending on amplitude of the initial noise, and non-adiabatic regime which
goes through non-stationary statistical states.

3. We have focused on the universal adiabatic regime and studied its growth trajectory from
weak nonlinearity through the states of intermediate nonlinearity to strongly nonlinear states.
We have observed how wave statistics in these states changes from Gaussian to strongly
non-Gaussian with a strong presence of rogue waves. Using the IST method to monitor this
evolution, we have found that the solitonic part of the wavefield becomes dominant even when
the (linear) dispersion effects are still leading in the dynamics and with increasing average
intensity the wavefield approaches a dense bound-state soliton gas, whose properties are defined
by the Fourier spectrum of the initial noise.

4. Regimes deviating from the universal adiabatic growth also lead to solitonic states, but
solitons in these states have noticeably different velocities and a significantly wider distribution
by amplitude, while the appearance of rogue waves is much more frequent.
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5. Conclusions – unexpected results.

1. Conditions for adiabatic growth contain relation between the pumping coefficient and basing
length. Significance: it is very difficult to create adiabatic regime for large basins.

2. Existence of a non-universal adiabatic regime when (i) the initial noise is sufficiently small, so
that the initial state is close to stationary and the adiabatic growth from this state is realized,
but (ii) the growth trajectory still depends on noise amplitude. We think that this is happening
due to the presence of solitons in the initial noise and the different effect of pumping on the
solitonic and non-solitonic contents of the wavefield.

3. For the universal adiabatic regime: no enhanced rogue wave generation until Af > 0.5 and
potential-to-kinetic energy ratio α > 1.

4. Solitons start to dominate early: already for Af = 0.125 (α = 0.0625) we have 60% of all
wave action sitting in solitons, and for Af = 0.25 (α = 0.25) we have 90% of all wave action
stored in the solitonic content. Regimes deviating from the universal adiabatic regime lead to
the same number and fraction of solitons in the total wave action. Significance: soliton gas may
be much more common in nature than we used to think.

5. As the pumping continues, we observe that solitons increase in number and amplitude and
form a bound state soliton gas. Moreover, for the universal adiabatic regime, we always grow
the same soliton gas (with the same soliton amplitudes and velocities), which depends only on
the Fourier amplitudes of the initial noise but does not depend on specific set of random Fourier
phases.

D.S Agafontsev et al Bound-state soliton gas as a limit... XXXI Session on Nonlinear Dynamics 17 / 18



6. References.

1) D.S. Agafontsev, V.E. Zakharov, Growing of integrable turbulence, Fiz. Nizk. Temp. 46,
934–939 (2020).

2) D.S. Agafontsev, A.A. Gelash, R.I. Mullyadzhanov and V.E. Zakharov, Bound-state soliton
gas as a limit of adiabatically growing integrable turbulence, Chaos Solitons Fractals 166,
112951 (2023).

Thank you for your attention!

D.S Agafontsev et al Bound-state soliton gas as a limit... XXXI Session on Nonlinear Dynamics 18 / 18


