Natalia Kuzmina

lab turb kuzmina Chief Scientist,
DSc (Physical and Mathematical Sciences)

Laboratory of Marine Turbulence
Ocean Physics

36, Nakhimovskii prospect, Moscow, 117997, Russia
+7(499)129-27-72

* Required Fields

 

Research Interests

Oceanic fronts, interleaving models, different type of instability in the ocean, intra-thermocline eddies, intrusions, mixing and turbulence, cross-frontal exchange, double diffusion.

Selected papers published in peer reviewed journals

  1. Kuzmina N.P. 2000. On the parameterization of interleaving and turbulent mixing using CTD data from the Azores Frontal Zone. Journal of Marine Systems, 23, 285-302.
  2. Kuzmina, Natalia, 2000. Comments of “Effect of baroclinicity on Double-Diffusive Interleaving”, J.Phys. Oceanogr., 30(7), 1827-1828.
  3. Kuzmina, N. P., and V. M. Zhurbas, 2000: Effects of double diffusion and turbulence on interleaving at baroclinic oceanic fronts. J. Phys. Oceanogr., 30(12), 3025-3038.
  4. Kuzmina N.P., 2001. On vertical structure of 3D interleaving of oceanic fronts with substantial baroclinicity and termoclinicity. Oceanology, 41(3), 356-363.
  5. Kuzmina N.P., 2002. Vertical structure of intrusive layering at oceanic ftonts. Meteorology and Hydrology, №12.
  6. Kuzmina, N., J.H. Lee, 2004. Influence of turbulent mixing on intrusive layering in the central part of Equatorial Pacific. Oceanology, 44(6), 826-836.
  7. Kuzmina, N., J.H. Lee, and V. Zhurbas, 2004. Effects of Turbulent Mixing and Horizontal Shear on Double-Diffusive Interleaving in the Central and Western Equatorial Pacific. J. Phys. Oceanogr., 34(1), 122-141.
  8. Kuzmina, N., B. Rudels, T. Stipa, and V. Zhurbas, 2005: The Structure and Driving Mechanisms of the Baltic Intrusions. J. Phys. Oceanogr., 35 (6), 1120-1137.
  9. Kuzmina. Natalia, and Jae Hak Lee. 2005: Driving Forces of Interleaving in the Baroclinic Front at the Equator. Journal of Physical Oceanography: 35(12), 2501–2519.
  10. Meier H.E.M., R. Feistel, J. Piechura, L. Arneborg, H. Burchard, V. Fiekas, N. Golenko, N. Kuzmina, V. Mohrholz, C. Nohr, V.T. Paka, J. Sellschopp, A. Stips, and V. Zhurbas (2006), Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observation and models, Oceanologia, 48(S), 133-164.
  11. Zhurbas V.M., T. Stipa, P. Mälkki, V. T. Paka, N. P. Kuzmina, and V. E. Sklyarov (2004). Mesoscale Variability of Upwelling in the South-East Baltic: Infrared Images and Numerical Modeling. Oceanology, 44(5), 660-669.
  12. Zhurbas, V. M., J. Laanemets, N. P. Kuzmina, S. S. Muraviev, J. Elken (2008), Direct estimates of lateral eddy diffusivity in the Gulf of Finland, Baltic Sea (by results of numerical experiments with an eddy-resolving model), Oceanology, 48(2), 175–181.
  13. Кузьмина Н.П., Журбас В.М., Руделс Б., Стипа Т., В.Т. Пака, С.С. Муравьев (2008). Role of Eddies and Intrusions in the Exchange Processes in the Baltic Halocline. Oceanology, 48(2), 149–158.
  14. Rudels, B., Kuzmina, N., Schauer U., and Zhurbas, V. (2009). Double-Diffusive Convection and Interleaving in the Arctic Ocean – Distribution and Importance. Geophysica, 45(1–2), 28–41.
  15. Zhurbas V.M., Jü. Elken, G. Väli, N.P. Kuzmina, and V.T. Paka (2010), Pathways of suspended particles transport in the bottom layer of the southern Baltic Sea depending on wind forcing (numerical simulation), Oceanology, 50(6), 890–993.
  16. Kuzmina N., B. Rudels, V. Zhurbas, and T. Stipa (2011), On the structure and dynamical features of intrusive layering in the Eurasian Basin in the Arctic Ocean, J. Geophys. Res., 116, C00D11, doi:10.1029/2010JC006920.
  17. Kuzmina N.P., Zhurbas N.V. (2012). Comparative analysis of vertical thermohaline structure in the northwest Tropical Atlantic and the Eurasian Basin of Arctic. Meteorology and Hydrology, №7, 44–53.
  18. Kuzmina N.P., Rudels B., Zhurbas N.V. (2013). Structure of intrusions and fronts in the deep layer of the Eurasian basin and Makarov basin (Arctic). Oceanology, 53(4), 410–421.
  19. Zhurbas V., Lyzhkov D., Kuzmina N. (2014), Drifter-derived estimates of lateral eddy diffusivity in the World Ocean with emphasis on the Indian Ocean and problems of parameterization. Deep-Sea Research Part I, 2014. 83, 1–11.
  20. Zhurbas V.M., Lyzhkov D.A., Kuzmina N.P. (2014). Estimates of the Lateral Eddy Diffusivity in the Indian Ocean as Derived from Drifter Data, Oceanology, 54(3), 281–288.
  21. Kuzmina N.P., Zhurbas N.V., Emelianov M.V., Pyzhevich M.L. (2014). Application of interleaving models for the description of intrusive layering at the fronts of deep polar water in the Eurasian Basin (Arctic). Oceanology, 54(5), 557–566.
  22. Kuzmina N.P. (2016). On a hypothesis of large-scale intrusions formation in the Arctic basin. Fundamental and Applied Hydrophysics, 9(2), 15–26.
  23. Kuzmina N. (2016). A possibility of large scale intrusions generation in the Arctic Ocean under stable-stable stratification: an analytical consideration, Ocean Sci., 12, 1269–1277.
  24. Zhurbas V.M., Kuzmina N.P., Lyzhkov D.A. (2017). Eddy Formation behind a Coastal Cape in a Flow Generated by Transient Longshore Wind (Numerical Experiments), Oceanology 57(4), 350–359.
  25. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2018. On Instability of Geostrophic Current with linear vertical shear at length of interleaving. Izvestiya, Atmospheric and Oceanic Physics, 54(1), 47-55, DOI: 10.1134/S0001433818010097.
  26. Skorokhodov S.L., Kuzmina N.P., 2018. Analytical-numerical Method for solving an Orr-Sommerfeld – type Problem for analysis of Instability of Ocean Currents. Computational Mathematics and Mathematical Physics, 58(6), 976-992, DOI: 10.1134/S0965542518060143.
  27. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2019. Description of the perturbations of Oceanic Geostrophic Currents with Linear Vertical Velocity Shear taking into account Friction and Diffusion of Density. Izvestiya, Atmospheric and Oceanic Physics, 55(2), 207-217, DOI: 10.1134/S0001433819020117.
  28. Skorokhodov S.L., Kuzmina N.P., 2019. Spectral analysis of Model Couette Flows in application to the Ocean. Computational Mathematics and Mathematical Physics, 59(5), 815-83, DOI: 10.1134/S0965542519050142.
  29. Zhurbas V., Väli G., Kuzmina N., 2019. Rotation of floating particles in submesoscale cyclonic and anticyclonic eddies: a model study for the southeastern Baltic Sea. Ocean Sci., 15, 1691–1705, https://doi.org/10.5194/os-15-1691-2019.
  30. Zhurbas N., Kuzmina N., 2020. Variability of the thermohaline structure and transport of Atlantic water in the Arctic Ocean based on NABOS (Nansen and Amundsen Basins Observing System) hydrography data. Ocean Science, 16, 405–421, doi: 10.5194/os-16-405-2020.
  31. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2020. Effects of Friction and Buoyancy Diffusion on the Dynamics of Geostrophic Oceanic Current with a linear Vertical Velocity Profile.  Izvestiya, Atmospheric and Oceanic Physics, 56(6), 591-602, DOI: 10.1134/S0001433820060067.
  32. Skorokhodov S.L., Kuzmina N.P., 2020. On the Influence of the Beta-effect on the Spectral Characteristics of Unstable Perturbations of Ocean Currents. Computational Mathematics and Mathematical Physics, 60(11), 1900-1912, DOI:10.1134/S0965542520110123.
  33. Skorokhodov S.L., Kuzmina N.P., 2021. Spectral Analysis of small perturbations of Geostrophic Currents with a Parabolic Vertical Profile of Velocity as applied to the Ocean. Computational Mathematics and Mathematical Physics, 61 (12), 1966-1979, DOI: 10.1134/S0965542521120137.
  34. Kuzmina N.P., Zhurbas N.V., 2021. Symmetric instability of geostrophic currents with a finite transverse timescale. Fundamental and Applied Hydrophysics, 14(4), 3–13, DOI: 10.7868/S2073667321040018.
  35. Zhurbas V., Väli G., Kuzmina N., 2022. Striped texture of submesoscale fields in the northeastern Baltic Proper: Results of very high-resolution numerical modelling for summer season. Oceanologia, 64(1), 1–21. DOI:10.1016/j.oceano.2021.08.003.
  36. Skorokhodov S.L., Kuzmina N.P., 2022. Analytical-numerical method for the analysis of small perturbations of oceanic geostrophic currents with a general parabolic vertical profile. Computational Mathematics and Mathematical Physics, 62(12), 2043–2053, DOI: 10.31857/S0044466922120134.
  37. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2023. On the types of instability of a geostrophic current with a vertical parabolic profile of velocity. Izvestiya, Atmospheric and Oceanic Physics, 59(2), 230–241.
  38. Lyzhkov, D. A., N. V. Zhurbas, and N. P. Kuzmina, 2023. Analysis of T, S-characteristics of the Atlantic water mass in the Eurasian Basin using the cluster method. Journal of Oceanological Research, 51 (1), 36–53, https://doi.org/10.29006/1564-2291.JOR-2023.51(1).2.
  39. Zhurbas V., Lebedev K., Kuzmina N., 2023. Is there the Equatorial Water mass in the Atlantic Ocean? Geophysical Research Letters, in press.
Top

 

TPL_A4JOOMLA-WINTERLAKE-FREE_FOOTER_LINK_TEXT