Nataliya Zhurbas

contact zhurbas n Scientist,
PhD (Physical and Mathematical Sciences)

Laboratory of Marine Turbulence
Ocean Physics

36, Nakhimovskii prospect, Moscow, 117997, Russia
+7(499)129-27-72

Research Interests:

  • Intrusive layering of thermohaline fronts
  • Double diffusion
  • Numerical modeling on river plume dynamics

Publications in peer reviewed journals:

  1. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2023. On the types of instability of a geostrophic current with a vertical parabolic profile of velocity. Izvestiya, Atmospheric and Oceanic Physics, 59(2), 230–241.
  2. Lyzhkov, D. A., N. V. Zhurbas, and N. P. Kuzmina, 2023. Analysis of T, S-characteristics of the Atlantic water mass in the Eurasian Basin using the cluster method. Journal of Oceanological Research, 51 (1), 36–53, https://doi.org/10.29006/1564-2291.JOR-2023.51(1).2.
  3. Kuzmina N.P., Zhurbas N.V., 2021. Symmetric instability of geostrophic currents with a finite transverse timescale. Fundamental and Applied Hydrophysics, 14(4), 3–13, DOI: 10.7868/S2073667321040018.
  4. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2020. Effects of Friction and Buoyancy Diffusion on the Dynamics of Geostrophic Oceanic Current with a linear Vertical Velocity Profile. Izvestiya, Atmospheric and Oceanic Physics, 56(6), 591-602, DOI: 10.1134/S0001433820060067.
  5. Zhurbas N., Kuzmina N., 2020. Variability of the thermohaline structure and transport of Atlantic water in the Arctic Ocean based on NABOS (Nansen and Amundsen Basins Observing System) hydrography data. Ocean Science, 16, 405–421, doi: 10.5194/os-16-405-2020.
  6. Zhurbas N.V., 2019. Estimation of Flow Rate and Thermohaline Characteristics of Atlantic Water in the Eurasian Basin. Russian Meteorology and Hydrology, 44(9), 603-612, DOI: 10.3103/S1068373919090048.
  7. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2019. Description of the perturbations of Oceanic Geostrophic Currents with Linear Vertical Velocity Shear taking into account Friction and Diffusion of Density. Izvestiya, Atmospheric and Oceanic Physics, 55(2), 207-217, DOI: 10.1134/S0001433819020117.
  8. Zhurbas N.V., 2018. On the eigenvalue spectra for a model problem describing formation of the large-scale intrusions in the Arctic Basin. Fundamental and Applied Hydrophysics, 11(1), 40-45. doi: 10.7868/S2073667318010045.
  9. Kuzmina N.P., Skorokhodov S.L., Zhurbas N.V., Lyzhkov D.A., 2018. On Instability of Geostrophic Current with linear vertical shear at length of interleaving. Izvestiya, Atmospheric and Oceanic Physics, 54(1), 47-55, DOI: 10.1134/S0001433818010097.
  10. Zhurbas N.V., Zavialov P.O., 2015. Effect of stratification on wind drift of river runoff in the Kara Sea. Oceanology, 55(6), 827–831, DOI: 10.1134/S0001437015060223.
  11. Kuzmina N.P., Zhurbas N.V., Emelianov M.V., Pyzhevich M.L., 2014. Application of Interleaving Models for the description of intrusive layering at the Fronts of Deep Polar Water in the Eurasian Basin (Arctic). Oceanology, 54(5), 557-566, DOI: 10.1134/S0001437014050105.
  12. Kuzmina N.P., Zhurbas N.V., Rudels B., 2013. Structure of intrusions and fronts in the deep layer of the Eurasian Basin and Makarov Basin (Arctic). Oceanology, 53(4), 410–421.
  13. Zhurbas N.V., 2013. The wind-induced drift velocity of the freshwater layer on the sea’s surface. Oceanology, 53(2), 557–566.
  14. Kuzmina N.P., Zhurbas N.V., 2012. Comparative analysis of vertical thermohaline structure of the Northwestern Tropical Atlantic and Eurasian Basin of the Arctic Ocean. Russian Meteorology and Hydrology, 37(7), 461–467.
Top

 

TPL_A4JOOMLA-WINTERLAKE-FREE_FOOTER_LINK_TEXT